• Title/Summary/Keyword: Inhomogeneous material

Search Result 150, Processing Time 0.026 seconds

Evaluation of TMJ sound on the subject with TMJ disorder by Joint Vibration Analysis

  • Hwang, In-Taek;Jung, Da-Un;Lee, Jae-Hoon;Kang, Dong-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • STATEMENT OF PROBLEM. Qualitative and semi-quantitative methods have been developed for TMJ sound classification, but the criteria presented are completely inhomogeneous. Thus, to develop more objective criteria for defining TMJ sounds, electroacoustical systems have been developed. We used Joint vibration analysis in the BioPAK system(Bioresearch Inc., Milwaukee, USA) as the electrovibratography. PURPOSE. The aim of this study was to examine the TMJ sounds with repect to frequency spectra patterns and the integral > 300 Hz /< 300 Hz ratios via six-months follow-up. MATERIAL AND METHODS. This study was done before and after the six-months recordings with 20 dental school students showed anterior disk displacement with reduction. Joint vibrations were analyzed using a mathematical technique known as the Fast Fourier Transform. RESULTS. In this study Group I and Group II showed varied integral > 300 /< 300 ratios before and after the six-months recordings. Also, by the comparative study between the integral > 300 /< 300 ratios and the frequency spectrums, it was conceivable that the frequency spectrums showed similar patterns at the same location that the joint sound occurred before and after the six-months recordings. while the frequency spectrums showed varied patterns at the different locations that the joint sound occurred before and after six-month recordings, it would possibly be due to the differences in the degree of internal derangement and/or in the shape of the disc. CONCLUSIONS. It is suggested that clinicians consider the integral > 300 /< 300 ratios as well as the frequency spectrums to decide the starting-point of the treatment for TMJ sounds.

Relationship between Crack Width and Gas Diffusion Coefficient of Cracked Acrylic Specimens (균열 아크릴 시편의 기체 확산계수와 균열폭의 관계)

  • Lee, Do-Keun;Lim, Min-Hyuk;Shin, Kyung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Recently, as the importance of structural maintenance has been increased, studies on self - healing concrete technology are being actively carried out. On the other hand, test for evaluating the self-healing performance is not standardized yet. Although visual test is used as a basic method for measuring crack widths, it is difficult to observe the crack width inside the specimen, and there is a disadvantage that only the local measurement of the surface can be measured due to the inhomogeneous cracking characteristics. Although permeability test has been widely used as an indirect method for measuring crack width, there is a problem due to the viscosity of water, and also a possibility that the internal material of the specimen may be eluted during the test. In this study, we propose a crack width evaluation method using gas diffusion characteristics. Idealized straight cracks were fabricated by acrylic and the diffusion coefficients of specimens were analyzed with respect to crack width and thickness. The experimental results show that the crack width and the diffusion coefficient are in a linear relationship and that the thickness and diffusion coefficient are inversely related.

Effects of Molding Conditions on the Deflection of Rib Moldings of Fiber-reinforced Plastic Composites in Compression Molding (섬유강화 플라스틱 복합재료의 압축성형에서 리브 성형품의 휨에 미치는 성형조건의 영향)

  • Kim, Jin-Woo;Lee, Jung-Hoon;Lee, Dong-Gi
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.285-290
    • /
    • 2017
  • Molding of body with ribs is the most difficult during flow molding process. The rib area is easy to be deformed at the rear side due to wall thickness variation. In this study, relationships between molding condition and deflection of rib-shaped part is investigated during the compression molding of fiber reinforced plastic composites, and the following results are derived. Polypropylene(PP), Polystyrene(PS), and stampable sheet(SS 40wt%) show the increment of deflection along with releasing temperature. For the correlation between incremental holding pressure load and deflection, stampable sheet exhibits lower deflection along with higher holding pressure, while PS shows significant increase of deflection with higher holding pressure, PP shows completely different characteristic, significant reduction of deflection along with higher holding pressure. Regarding to mold temperature and deflection, deflection amount of SS is the biggest, and PS shows the smallest. In addition, all three kinds shows the highest amount of deflection at 173C. Deflection is reduced when mold closing speed is increased. Amount of deflection in SS is larger and is not highly dependent on molding conditions like holding pressure and cooling parameters, compared with single component material like PP. This can be elucidated by anisotropic and inhomogeneous characteristics of glass fiber during filling process of stampable sheet composite.

Viscoelastic Behavior of High Density Polyethylene Using High Tibial Osteotomy with Respect to the Strain Rate (근위경골절골술(HTO)용 X-밴드 플레이트에 적용되는 고밀도 폴리에틸렌(HDPE)의 변형률속도에 따른 점탄성거동)

  • Hwang, Jung-Hoon;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.431-438
    • /
    • 2012
  • The mechanical behavior of the polymeric material, HDPE depends on both time and temperature. The study of the tensile behavior at different strain rates is important in engineering design of the orthopedics device such as X-band plate. The mechanical properties and deformation mechanisms of HDPE are strongly dependent on the applied strain rate. Generally, the deformation behavior of HDPE based on the stress-strain curve is complex because of the highly inhomogeneous nature of plastic deformation, particularly that of necking. Therefore, we attempted to determine the mechanical behavior of HDPE in this study. Normally, tensile testing under various strain rates of the HDPE has been used to determine the mechanical behavior. We performed tensile tests at various strain rates (1 to 500 %/min) to analyze the viscoelastic behavior on increasing the strain rate. A tensile stress-strain curve was plotted from the data, and the point of transition was marked to calculate the transition stress, strain, and modulus.

SURFACE CHARACTERISTICS AND BIOLOGICAL RESPONSES OF HYDROXYAPATITE COATING ON TITANIUM BY HYDROTHERMAL METHOD: AN IN VITRO STUDY

  • Kim, Dong-Seok;Kim, Chang-Whe;Jang, Kyung-Soo;Lim, Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.363-378
    • /
    • 2005
  • Statement of problem. Hydroxyapatite(HA) coated titanium surfaces have not yet showed the reliable osseointegration in various conditions. Purpose. This study was aimed to investigate microstructures, chemical composition, and surface roughness of the surface coated by the hydrothermal method and to evaluate the effect of hydrothermal coating on the cell attachment, as well as cell proliferation. Material and Methods. Commercially pure(c.p.) titanium discs were used as substrates. The HA coating on c.p. titanium discs by hydrothermal method was performed in 0.12M HCl solution mixed with HA(group I) and 0.1M NaOH solution mixed with HA(group II). GroupⅠ was heated at 180 $^{\circ}C$ for 24, 48, and 72 hours. GroupⅡ was heated at 180 $^{\circ}C$ for 12, 24, and 36 hours. And the treated surfaces were evaluated by Scanning electron microscopy(SEM), Energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS), X-ray diffraction method(XRD), Confocal laser scanning microscopy(CLSM). And SEM of fibroblast and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay were used for cellular responses of the treated surfaces. Results. The color of surface changed in both groups after the hydrothermal process. SEM images showed that coating pattern was homogeneous in group II, while inhomogeneous in group I. H72 had rosette-like precipitates. The crystalline structure grew gradually in group II, according to extending treatment period. The long needle-like crystals were prominent in N36. Calcium(Ca) and phosphorus(P) were not detected in H24 and H48 in EDS. In all specimens of group II and H72, Ca was found. Ca and P were identified in all treated groups through the analysis of XPS, but they were amorphous. Surface roughness did not increase in both groups after hydrothermal treatment. The values of surface roughness were not significantly different between groups I and II. According to the SEM images of fibroblasts, cell attachments were oriented and spread well in both treated groups, while they were not in the control group. However, no substantial amount of difference was found between groups I and II. Conclusions. In this study during the hydrothermal process procedure, coating characteristics, including the HA precipitates, crystal growth, and crystalline phases, were more satisfactory in NaOH treated group than in HCl treated group. Still, the biological responses of the modified surface by this method were not fully understood for the two tested groups did not differ significantly. Therefore, more continuous research on the relationship between the surface features and cellular responses seems to be in need.

A Monte Carlo Simulation for the Newly Developed Head-and-Neck IMRT Phantom: a Pilot Study (제작된 선량 검증용 IMRT 팬텀의 몬테칼로 시뮬레이션: 예비적 연구)

  • Kang, Sei-Kwon;Cheong, Kwang-Ho;Ju, Ra-Hyeong;Cho, Byung-Chul;Oh, Do-Hoon;Kim, Su-SSan;Kim, Kyoung-Ju;Bae, Hoon-Sik;Han, Young-Yih;Shin, Eun-Hyuk;Park, Sung-Ho;Lim, Chun-Il
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.126-133
    • /
    • 2007
  • A head-and-neck phantom was designed in order to evaluate remotely the quality of the delivery dose of intensity modulated radiation therapy (IMRT) in each institution. The phantom is homogeneous or inhomogeneous by interchanging the phantom material with the substructure like an air or bone plug. Monte Carlo simulations were executed for one beam and three beams to the phantom and compared with ion chamber and thermoluminescent dosimeter (TLD) measurements of which readings were from two independent institutions. For single beam, the ion chamber results and the MC simulations agreed to within about 2% TLDs agreed with the MC results to within 2% or 7% according to which institution read the TLDs. For three beams, the ion chamber results showed -5% maximum discrepancy and those of TLDs were $+2{\sim}+3%$. The accuracy of the TLD leadings should be increased for the remote dose monitoring. MC simulations are a valuable tool to acquire the reliability of the measurements in developing a new phantom.

  • PDF

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.

Synthesis of P-type Zeolite Using Melting Slag from Municipal Incineration Ash (도시 소각재 용융슬래그로부터 P형 제올라이트 합성)

  • Lee Sung-Ki;Jang Young-Nam;Chae Soo-Chun;Ryu Kyoung-Won;Bae In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.7-14
    • /
    • 2006
  • Melting slag generated from the lots of municipal incineration ash, which causes the one of big urban problems in modern industrial society, was used as starting material for the hydrothermal synthesis of zeolite. P-type zeolite has been successfully synthesized by the combined process of both 'hydrogelation' and 'clay conversion' method. Commercial sodium silicate was used as Si source, and $NaAlO_2$ was prepared by the reaction in a $Na_{2}O/Al_{2}O_{3}$ molar ratio of 1.2. The optimum conditions for zeolite synthesis was found to be the $SiO_{2}/Al_{2}O_{3}$ ratio in the 3.2 and 4.2 range, the $H_{2}O/Na_{2}O$ ratio in the 70.7 and 80.0 range, and more than 15-hour reaction time at $80^{\circ}C$, In the synthesized zeolite, inhomogeneous melting slag particles were disappeared and homogeneous P-type zeolite crystal was grown. The cation exchange capacity of the synthesized zeolite was determined to be approx. 240 cmol/kg.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

Verification of Skin Dose in Tomotherapy Using the Developed Phantom for Image Based Radiation Treatment System (영상 기반 치료 장비용 팬톰을 이용한 토모테라피 피부 선량 검증)

  • Park, Ji-Yeon;Chang, Ji-Na;Oh, Seung-Jong;Kang, Dae-Gyu;Jung, Won-Gyun;Lee, Jeong-Woo;Jang, Hong-Suk;Kim, Hoi-Nam;Park, Hae-Jin;Kim, Sung-Hwan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.88-96
    • /
    • 2009
  • Radiation treatment for skin cancer has recently increased in tomotherapy. It was reported that required dose could be delivered with homogeneous dose distribution to the target without field matching using electron and photon beam. Therapeutic beam of tomotherapy, however, has several different physical characteristic and irradiation of helical beam is involved in the mechanically dynamic factors. Thus verification of skin dose is requisite using independent tools with additional verification method. Modified phantom for dose measurement was developed and skin dose verification was performed using inserted thermoluminescent dosimeters (TLDs) and GafChromic EBT films. As the homogeneous dose was delivered to the region including surface and 6 mm depth, measured dose using films showed about average 2% lower dose than calculated one in treatment planning system. Region indicating about 14% higher and lower absorbed dose was verified on measured dose distribution. Uniformity of dose distribution on films decreased as compared with that of calculated results. Dose variation affected by inhomogeneous material, Teflon, little showed. In regard to the measured dose and its distribution in tomotherapy, verification of skin dose through measurement is required before the radiation treatment for the target located at the curved surface or superficial depth.

  • PDF