• Title/Summary/Keyword: Inhomogeneous Correction

Search Result 23, Processing Time 0.022 seconds

Development of Elliptic Relaxation Model With The Inhomogeneous Correction (비균질 수정을 사용한 타원완화모형 개발)

  • Chun Kun Ho;Choi Young Don;Shin Jong Keun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.815-818
    • /
    • 2002
  • The elliptic relaxation model(ERM) with the inhomogeneous correction intermediate between near wall with and far from the wall. The source of the ERM usually was appled quasi-homogeneous pressure-strain correlation in homogeneous situations. This formulation was easily applied to the linear model or non-linear pressure-strain model. It is observed that the boundary conditions of the relaxation operator dominate the homogeneous pressure-strain model in the near wall region. While looking at high-Reynolds number flows, it was found necessary to modify the effect of the relaxation operator throughout the log region by accounting for gradients of the flatness variable and turbulent length scales. These effects are kinematic blocking of the wall normal velocity fluctuation and pressure reflections from the surface. This model is wall distances and unit vectors which make the model applicable to flows boundary by a complex geometry. Inhomogeneous correction model is computed inertial and non-inertial channel flow These are compared DNS(Kim et at., Kristofffrsen & Andersson) for channel flow. The present model could be predicted well for rotating flows.

  • PDF

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Green's function coupled with perturbation approach to dynamic analysis of inhomogeneous beams with eigenfrequency and rotational effect's investigations

  • Hamza Hameed;Sadia Munir;F.D. Zaman
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.19-40
    • /
    • 2024
  • The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth-order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first-order correction terms, are also computed and displayed in tabular forms.

Evaluation of Corrected Dose with Inhomogeneous Tissue by using CT Image (CT 영상을 이용한 불균질 조직의 선량보정 평가)

  • Kim, Gha-Jung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Purpose: In radiation therapy, precise calculation of dose toward malignant tumors or normal tissue would be a critical factor in determining whether the treatment would be successful. The Radiation Treatment Planning (RTP) system is one of most effective methods to make it effective to the correction of dose due to CT number through converting linear attenuation coefficient to density of the inhomogeneous tissue by means of CT based reconstruction. Materials and Methods: In this study, we carried out the measurement of CT number and calculation of mass density by using RTP system and the homemade inhomogeneous tissue Phantom and the values were obtained with reference to water. Moreover, we intended to investigate the effectiveness and accuracy for the correction of inhomogeneous tissue by the CT number through comparing the measured dose (nC) and calculated dose (Percentage Depth Dose, PDD) used CT image during radiation exposure with RTP. Results: The difference in mass density between the calculated tissue equivalent material and the true value was ranged from $0.005g/cm^3\;to\;0.069g/cm^3$. A relative error between PDD of RTP and calculated dose obtained by radiation therapy of machine ranged from -2.8 to +1.06%(effective range within 3%). Conclusion: In conclusion, we confirmed the effectiveness of correction for the inhomogeneous tissues through CT images. These results would be one of good information on the basic outline of Quality Assurance (QA) in RTP system.

  • PDF

A Study on the Land Cover Characteristics in Korea : Application of Hybrid Classifier and Topographic Normalization

  • Jeon, Seong-Woo;Jung, Hui-Cheul;Chung, Sung-Moon;Lee, Sang-Ik
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.271-280
    • /
    • 1999
  • The topographical effect resulted from rugged terrains and inhomogeneous spectral characteristics due to the complexly mixed land cover condition of Korea substantially lower the remotely sensed land cover classification accuracy In this study, a topographic correction method using digital elevation model to alleviate the topographic effects. To deal with inhomogeneous spectral characteristic, a hybrid classifier with inclusion of prior probabilities was introduced. This investigation concluded that the topographical normalization and hybrid classification with prior probabilities are effective on rugged landscape. The overall and average classification accuracies were improved by 0.92% and 1.016% respectively. The most substantial and noticeable accuracy improvement was observed in forest areas.

  • PDF

Contrast-enhanced Bias-corrected Distance-regularized Level Set Method Applied to Hippocampus Segmentation

  • Selma, Tisa;Madusanka, Nuwan;Kim, Tae-Hyung;Kim, Young-Hoon;Mun, Chi-Woong;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1236-1247
    • /
    • 2016
  • Recently, the level set has become a popular method in many research fields. The main reason is that it can be modified into many variants. One such case is our proposed method. We describe a contrast-enhancement method to segment the hippocampal region from the background. However, the hippocampus region has quite similar intensities to the neighboring pixel intensities. In addition, to handle the inhomogeneous intensities of the hippocampus, we used a bias correction before hippocampal segmentation. Thus, we developed a contrast-enhanced bias-corrected distance-regularized level set (CBDLS) to segment the hippocampus in magnetic resonance imaging (MRI). It shows better performance than the distance-regularized level set evolution (DLS) and bias-corrected distance-regularized level set (BDLS) methods in 33 MRI images of one normal patient. Segmentation after contrast enhancement and bias correction can be done more accurately than segmentation while not using a bias-correction method and without contrast enhancement.

Design of Rugate Filters of Inhomogeneous Refractive Index Using the Fourier transform (Fourier 변환을 이용한 불균일 굴절률 Rugate 필터의 설계)

  • 조현주;이종오;황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.245-256
    • /
    • 1995
  • Rugate filters of inhomogeneous refractive index were designed using the Fourier transform and the effect of reflectance, stop bandwidth, optical thickness, and Q function on the rugate filter was investigated. An iterative correction process using a merit function was employed to fit an initial design to the target spectrum. Three Q functions derived by Sossi, Bovard, and Fabricius, respectively, were compared in terms of the number of iteration, merit function, and optimum optical thickness. The result shows that after a number of iterations the Q functions by Bovard and Fabricius produce high rejection rugate filters closer to the target spectrum than the Sossi's Q function and the optimal optical thickness is determined by the stop-band width of the rugate filter. ilter.

  • PDF

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Tropospheric Anomaly Detection in Multi-Reference Stations Environment during Localized Atmospheric Conditions-(2) : Analytic Results of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.271-278
    • /
    • 2016
  • Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.

HOMOGENEOUS SOLUTION FOR SW LACERTAE

  • Kim, Kyung-Joo;Kang, Young-Woon
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.19-31
    • /
    • 1996
  • We have analyzed collected photoelectric light curves for light variations of SW Lac. The method of Fourier analysis was adopted to quantify the light variation from season to season. We found the linear relation between the Fourier coefficient, B1 and the magnitude difference between two maxima. The total light of the system has been decreased as much as 0m.04 during approxiamately 20 years time interval. Photoelectric parameters including spot parameters for all light curves were obtained by the method of the Wilson and Devinney differential correction in order to secure the variations of parameters from season to season. SW Lac, not like RS CVn type stars, required to adjust all parameters as well as spot parameters for a reasonable fit to the observations of each epoch. A surface temperature of cooler star is one of the most sensitive parameters to affect a shape of light curve of SW Lac. We conclude that the shape of light curve of SW Lac varies even during one season as well as season to season. The light curve is mainly caused by inhomogeneous surface temperature due to strong chromospheric activity of the system.

  • PDF