• Title/Summary/Keyword: Inhibitors

Search Result 3,662, Processing Time 0.027 seconds

The Improvement of Radiation Characteristics of Low Density Polyethylene by Addition of Treeing Inhibitors (트리 억제제 첨가에 의한 저밀도 폴리에틸렌의 내방사선성 향상)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung;Lim, Kee-Joe
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.455-461
    • /
    • 2000
  • The inhibiting effects of electrical treeing and insulation properties of LDPE contained with treeing inhibitors was studied under radiation environment. Barbituric acid and its derivatives were selected as treeing inhibitors. The inception voltage and growth of tree, AC breakdown strength, volume resistivity, high frequency capacitance, and dissipation factor were observed as a function of dose(up to 1000 kGy). And also, measurements of thermo-luminescence(TL), and gel content were carried out. Crosslinked low density polyethylene(XLPE) contained with treeing inhibitors shows better insulation characteristics such as electrical tree propagation, AC breakdown strength, and volume resistivity than those of pure LDPE. The most effective treeing inhibitor was found on the barbituric acid contained XLPE.

  • PDF

Tankyrase: Function and Tankyrase Inhibitor in Cancer

  • Kim, Mi Kyung
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.150-156
    • /
    • 2018
  • Tankyrases are multifunctional poly (ADP-ribose) polymerases that regulate a variety of cellular processes including WNT signaling, telomere maintenance, regulation of mitosis, and many others. Tankyrases interact with target proteins and regulate their interactions and stability through poly (ADP-ribosyl) ation. In addition to their roles in telomere maintenance and regulation of mitosis, tankyrase proteins regulate tumor suppressors such as AXIN, PTEN, and AMOT. Therefore, tankyrases can be effective targets for cancer treatment. Tankyrase inhibitors could affect a variety of pathways that are carcinogenic (essential for the unlimited proliferation of human cancer cells), including WNT, AKT, YAP, telomere maintenance, and regulation of mitosis. Recently, new aspects of the function and mechanism of tankyrases have been reported and several tankyrase inhibitors have been identified. Also, it has been proposed that the combination of conventional chemotherapy agents with tankyrase inhibitors may have synergistic anti-cancer effects. Based on this, it is expected that more advanced and improved tankyrase inhibitors will be developed, enabling new therapeutic strategies against cancer and other tankyrase linked diseases. This review discusses tankyrase function and the role of tankyrase inhibitors in the treatment of cancer.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Arylamino Substituted Mercaptoimidazole Derivatives as New Corrosion Inhibitors for Carbon Steel in Acidic Media: Experimental and Computational Study

  • Duran, Berrin;Yurttas, Leyla;Duran, Murat
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.365-376
    • /
    • 2021
  • Two arylamino substituted mercaptoimidazole derivatives namely 4,5-dimethyl-1-(phenylamino)-1H-imidazole-2(3H)-thione (I1) and 4,5- dimethyl-1-((p-chlorophenyl)amino)- 1H-imidazole-2(3H)-thione (I2) were synthesized and investigated as corrosion inhibitors for carbon steel in 0.5 M HCl solution by means of electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, ATR-FTIR spectroscopy and SEM. The results showed that the investigated mercaptoimidazole derivatives act as mixed type inhibitors and inhibition efficiency follows the I2>I1 order. Adsorption of inhibitors on metal surface was found to obey the Langmuir adsorption isotherm. Thermodynamic parameters revealed that adsorption of the inhibitors has both physisorption and chemisorption adsorption mechanism. Electrochemical test results were supported by quantum chemical parameters obtained from DFT calculations.

Development of radiolabelled histone deacetylase inhibitors for PET imaging study

  • Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.165-170
    • /
    • 2020
  • Histone Deacetylases (HDACs) are enzymes that have control gene expression regulation and cell state. In additions, inhibitions of HDACs are associated with growth arrest, differentiation, or apoptosis of tumor cell. Thus HDAC inhibition is one of the interesting biological targets. A variety of HDAC inhibitors has been developed by many scientists, and some of chemical structures related with HDAC inhibitors were modified to give radiolabeled HDAC inhibitors for positron emission tomography (PET) study. In this highlight review, the development of radiolabeled HDAC inhibitors for PET study are described.

Histone deacetylation effects of the CYP1A1 promoter activity, proliferation and apoptosis of cells in hepatic, prostate and breast cancer cells

  • K.N. Min;K.E. Joung;M.J. Cho;J.Y. An;Kim, D.K.;Y.Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.91-91
    • /
    • 2003
  • We have studied the mechanism of action of TCDD on CYP1A1 promoter activity in both Hepa I and MCF-7 cells using transient transfection system with plAl-Luc reporter gene. When HDAC inhibitors, such as trichostatin A, HC toxin and a novel HDAC inhibitor, IN2001 were cotreated with TCDD to the cells transfected with plAl-Luc reporter gene, the basal promoter activity of CYP1A1 was increased by HDAC inhibitors. Also, in MCF-7 human breast cancer cells, HDAC inhibitors, such as IN2001 and trichostatin A increased the basal activity of CYP1A1 promoter but TCDD stimulated CYP1A1 promoter activity was not changed by HDAC inhibitors. And, in stably-transfected Hepa I cells with plAl-Luc, HDAC inhibitors increased the basal promoter activity only.

  • PDF

Sodium-Glucose Cotransporter 2 Inhibitors for Chronic Kidney Disease: A Comprehensive Review (SGLT2 억제제와 만성 콩팥병)

  • Su Hyun Song;Eun Hui Bae
    • The Korean Journal of Medicine
    • /
    • v.99 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • Chronic Kidney Disease (CKD) is a major global health burden. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated potential in slowing CKD progression. We evaluated the expanding role of SGLT2 inhibitors, emphasizing their renoprotective benefits in diabetic and non-diabetic CKD patients. We also investigated the underlying mechanisms, including the reduction of glomerular hypertension via modulation of tubuloglomerular feedback. Our study critically analyzed current indications for SGLT2 inhibitor therapy based on recent clinical trial data. To optimize patient outcomes, we present a comprehensive analysis of practical considerations for the prescription of SGLT2 inhibitors, including the potential initial decline in the estimated glomerular filtration rate and a review of adverse events.

Effect of Protease Inhibitors on Degradation of Recombinant Human Epidermal Growth Factor in Skin Tissue

  • Ryou, Hae-Won;Lee, Jang-Won;Kyung, Kyung-Ae;Park, Eun-Seok;Chi, Sang-Cheol
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.34-38
    • /
    • 1997
  • Recombinant human epidermal growth factor (rhEGF), a polypeptide of 53 amino acid residues, is subject to degradation by numerous enzymes, especially proteases, when it is applied on the skin for the treatment of open wound. Amastatin, aprotinin, bestatin, EDTA, EGTA, gabexate, gentamicin, leupeptin, and TPCK were investigated for the possible protease inhibitors, which may use to protect rhEGF from degradation by the enzymes in the skin. Skin homogenates containing protease inhibitors and rhEGF were incubated at $37^{\circ}C$ for 30 minutes. After the reaction was stopped with trifluoroacetic acid, the amount of rhEGF remaining in the sample was determined with an HPLC method. The percentages of rhEGF degraded, at the skin/PBS ratio of 0.25, in the mouse, rat, and human skin homogenate were 85%, 70%, and 46%, respectively. The degree of degradation of rhEGF in the cytosolic fraction was higher than that in the membrane fraction and these enzyme reactions were completed in 30 minutes. Bestatin, EGTA, and TPCK showed significant inhibitory effects on the degradation of rhEGF in the two fractions (p<0.05), while the other protease inhibitors had no significant inhibitory effects or, even resulted in deleterious effects. Therefore, the formulation containing one or several inhibitors among these effective inhibitors would be a promising topical preparation of rhEGF for the treatment of open wound.

  • PDF

The Molecular Modeling of Novel Inhibitors of Protein Tyrosine Phosphatase 1B Based on Catechol by MD and MM-GB (PB)/SA Calculations

  • Kocakaya, Safak Ozhan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1769-1776
    • /
    • 2014
  • Binding modes of a series of catechol derivatives such as protein tyrosine phosphatase 1B (PTP1B) inhibitors were identified by molecular modeling techniques. Docking, molecular dynamics simulations and free energy calculations were employed to determine the modes of these new inhibitors. Binding free energies were calculated by involving different energy components using the Molecular Mechanics-Poisson-Boltzmann Surface Area and Generalized Born Surface Area methods. Relatively larger binding energies were obtained for the catechol derivatives compared to one of the PTP1B inhibitors already in use. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicated that the hydroxyl functional groups and biphenyl ring system had favorable interactions with Met258, Tyr46, Gln262 and Phe182 residues of PTP1B. The results of hydrogen bound analysis indicated that catechol derivatives, in addition to hydrogen bonding interactions, Val49, Ile219, Gln266, Asp181 and amino acid residues of PTP1B are responsible for governing the inhibitor potency of the compounds. The information generated from the present study should be useful for the design of more potent PTP1B inhibitors as anti-diabetic agents.

Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells

  • Park, Jeong-A;Kim, Young-Eun;Seok, Hyun-Jeong;Park, Woo-Youn;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heat-shock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.