• Title/Summary/Keyword: Inhibition of platelet aggregation

Search Result 155, Processing Time 0.022 seconds

Anti-thrombic Properties of the Oriental Herbal Medicine, Daejowhan

  • Chang Gyu-Tae;Kim Jang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1391-1398
    • /
    • 2005
  • The anti-thrombic properties of the oriental herbal medicine Daejowhan(DJW, 大造丸) which consists of 11 kinds of herbs (indicated as ratio) of Rehmanniae Radix 24%, Hominis Placenta 5%, Testudinis Carapax 9%, Eucommiae Cortex 9%, Asparagi Radix 9%, Phellodendri Cortex 9%, Achyranthis Radix 7%, Liriopis Tuber 7%, Angelicae Sinensis Radix 7%, Ginseng Radix 5% and Schizandrae Fructus 3% were investigated. The water extracts from DJW inhibited Platelet-activating factor(PAF) induced platelet aggregation. DJW was extracted with methanol and further fractionated by ethylacetate. A 70% methanol extract showed a strong inhibition against PAF-induced aggregation in vitro and in vivo assays. The ethylacetate soluble fraction was shown to have inhibitory effect on PAF-induced platelet aggregation in vitro assay. The ethylacetate soluble fraction specially protected against the lethality of PAF, while verapamil did not afford any protection. These results indicate that the water extracts and alcoholic-fractions inhibit the action of PAF in vivo by an antagonistic effect on PAF, so that it may be useful in treating disorders caused by PAF, such as acute allergy, inflammation, asthma, gastrointestinal ulceration, toxic shock and so forth. DJW was investigated regarding its assumed anti-thrombic action on human platelets which was deduced from its ability to suppress Arachidonic acid(AA)-induced aggregation, exocytosis of ATP, and inhibition of Cyclooxygenase(COX) and Thromboxane synthase(TXS) activity. The latter two effects were estimated from the generation of Prostaglandin $E_2(PGE_2)$ and Thromboxane $A_2(TXA_2)$ respectively. Exogenously applied AA ($100{\mu}mol/{\ell}$) provoked a $89\%$ aggregation of platelets, the release of 14 pmol ATP, and the formation of either 225 pg $TXA_2$ or 45 pg $PGE_2$, each parameter being related to 106 platelets. An application of DJW 5 min before AA dose-dependently diminished aggregation, ATP-release and the synthesis of $TXA_2$ and $PGE_2$ with $IC_{50}$ values of 74, 108, 65, $72{\mu}g/m{\ell}$, respectively. The similarity of the $IC_{50}$ values suggest an inhibition of COX by DJW as primary target, thus suppressing the generation of $TXA_2$ which induces aggregation of platelets and exocytosis of ATP by its binding on $TXA_2$-receptors.

Inhibitory Actions of Steppogenin on Platelet Activity Through Regulation of Glycoprotein IIb/IIIa and Ca2+ Mobilization (Glycoportein IIb/IIIa와 칼슘동원의 조절을 통한 Steppogenin의 혈소판활성 억제효과)

  • Shin, Jung-Hae;Ha, Ju-Yeon;Kwon, Hyuk-Woo
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.2
    • /
    • pp.100-106
    • /
    • 2020
  • The extract of Cudrania tricuspidata is used in ethnomedicine throughout Eastern Asia in China, Korea and Japan. In Korean traditional medicine, Cudrania tricuspidata has been used to treat eczema, mumps, tuberculosis, contusions, insomnia and acute arthritis. In addition, it has been reported that root extract of Cudrania tricuspidata has anti-platelet effects. Therefore, we investigated which compound in Cudrania tricuspidata has inhibitory effect on platelet aggregation. In this study, we tried to explain the inhibitory mechanism of steppogenin from Cudrania tricuspidata on human platelet aggregation. Collagen-induced human platelet aggregation and [Ca2+]i mobilization were dose-dependently inhibited by steppogenin and we determined the inhibition by steppogenin is due to the down regulation of extracellular-signal-regulated kinase(ERK) and inositol-1,4,5-triphosphate receptor type I(IP3RI) phosphorylation. In addition, steppogenin inhibited collagen-induced fibronectin adhesion to αIIb/β3 and thromboxane A2 generation. Thus, in the present study, steppogenin showed an inhibitory effect on human platelet aggregation, suggesting its potential use for preventing platelet-induced cardiovascular disease.

Anti-Platelet Aggregating Effect of Solvent Extracts from Korean Soybean Varieties and Isoflavone Derivatives (품종별 국산콩 추출물 및 Isoflavone 유도체의 혈소판 응집억제작용)

  • Jang, Mi-Jeong;Kang, Myung-Hwa;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1320-1324
    • /
    • 2005
  • Soybean (Glycine max L.) is an increasingly important food source and functional food. Platelet aggregation plays an important role in thrombogenesis and atherosclerosis. Here, we studied the anti-platelet aggregating effects of solvent extracts from Korean soybean varieties and isoflauone derivatives. Nine Korean soybean varieties were extracted by solvents (methanol and buthanol and their extracts was investigated for the inhibition against tile aggregation of washed rabbit platelets induced by collagen or thrombin. Maximal inhibition of buthanol extracts against platelet aggregation induced by collagen was $95\%$ in Black-kong and Jinpum - kong. The potency of their inhibition was in the following order : Black > Jinpum > Bokwang > Hwangkum > Pureun > Malli > Danbaek > Danyeob > Jangsu - kong. The Black - kong only seemed to produce the maximal inhibition against platelet aggregation induced by thrombin. Total isoflavone content measured was Jinpum-kong ($1347.8{\mu}g/g$) and Black-kong ($918.7{\mu}g/g$). Maximal inhibition of isoflavone derivatives against platelet aggregation induced by collagen was $97\%$ in genistein. The potency of their inhibition was in the following order: genistein>daidzein>genistin. The isoflavone derivatives did not affect the platelet aggregation induced by thrombin. However, Black-kong cortex seemed to Produce the optimal inhibition against platelet aggregation induced by collagen. These results suggest that Black-kong and Jinpum-kong may be a good source for antiplatelet agents, and their antiplatelet effect be related to tile content and the chemical structure with the number of -OH group and the attached glycoside in the isoflavone derivative.

Pharmacological Actions of Crinum folium (나군대 잎의 약리 효과에 관한 연구)

  • Lee, Song-Deuk;Lee, Sang-Hun;Choi, Su-Wan;Kwon, Won-Jun;Kim, Il-Hyuk
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.2
    • /
    • pp.139-147
    • /
    • 1995
  • Crinum asiaticum var. japonicum is a wild plant growing only in Jeju-island, Korea, and in Japan. The whole part of this plant has been known to have the pharmacological actions such as analgesic, anti-inflammatory, platelet-aggregation inhibitory, antitussive, and expectorant. With these assumed actions, the leaves (Crinum folium) of this plant has been used in the folk remedies for arthritis and arthralgia. There is, however, no scientific evidences for the pharmacological actions of Crinum asiaticum var. japonicum. In the present study, the analgesic, anti-inflammatory, and platelet-aggregation inhibitory actions of Crinium folium were evaluated using writhing test, tail-flick test, carrageenin antiedema test, in vitro thromboxane $B_2$ quantitation assay and in vitro platelet aggregation test. In order to obtain the partially purified fraction whose pharmacological action is excellent, the methanol extract of Crinium folium was fractionated consecutively into four biological fractions such as ether, ethyl acetate, butanol, and water fractions and their pharmacological actions of the fractions were investigated. Putting our results together, Crinium folium, especially ethyl acetate fraction was proven to have significant analgesic, anti-inflammatory and platelet-aggregation inhibitory actions by inhibition of prostanoids biosynthesis as one of its mechanism of action.

  • PDF

Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa

  • Lee, Dong-Ha;Kim, Hyun-Hong;Lim, Deok Hwi;Kim, Jong-Lae;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP ($Ser^{157}$) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) and the release of ATP and serotonin in collagen-induced platelet aggregation. A-kinase inhibitor Rp-8-Br-cAMPS reduced CE-WIB801C-, and cordycepin-increased VASP ($Ser^{157}$) phosphorylation, and increased CE-WIB801C-, and cordycepin-inhibited the fibrinogen binding to ${\alpha}IIb/{\beta}3$. Therefore, we demonstrate that CE-WIB801C-, and cordycepin-inhibited fibrinogen binding to ${\alpha}IIb/{\beta}3$are due to stimulation of cAMP-dependent phosphorylation of VASP ($Ser^{157}$), and inhibition of PI3K/Akt phosphorylation. These results strongly indicate that CE-WIB801C and cordycepin may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs

  • Shin, Eun-Kyung;Park, Hanseul;Noh, Ji-Yoon;Lim, Kyung-Min;Chung, Jin-Ho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • Platelets play an essential role in hemostasis through aggregation and adhesion to vascular injury sites but their unnecessary activation can often lead to thrombotic diseases. Upon exposure to physical or biochemical stimuli, remarkable platelet shape changes precede aggregation or adhesion. Platelets shape changes facilitate the formation and adhesion of platelet aggregates, but are readily reversible in contrast to the irrevocable characteristics of aggregation and adhesion. In this dynamic phenomenon, complex molecular signaling pathways and a host of diverse cytoskeleton proteins are involved. Platelet shape change is easily primed by diverse pro-thrombotic xenobiotics and stimuli, and its inhibition can modulate thrombosis, which can ultimately contribute to the development or prevention of thrombotic diseases. In this review, we discussed the current knowledge on the mechanisms of platelet shape change and also pathological implications and therapeutic opportunities for regulating the related cytoskeleton dynamics.

Inhibitory Effects of Rice Bran Water Extract Fermented Lactobacillus plantarum due to cAMP-dependent Phosphorylation of VASP (Ser157) on human Platelet Aggregation

  • Kim, Hyun-Hong;Lee, Dong-Ha;Hong, Jeong Hwa;Ingkasupart, Pajaree;Nam, Gi Suk;Ok, Woo Jeong;Kim, Min Ji;Yu, Young-Bin;Kang, Hyo-Chan;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.103-114
    • /
    • 2015
  • In this study, we investigated the effect of rice bran water extract fermented with Lactobacillus plantarum KCCM-12116 (RBLp) on ADP ($20{\mu}M$)-, collagen ($10{\mu}g/mL$)-, and thrombin (0.2 U/mL)-stimulated platelet aggregation. RBLp dose-dependently inhibited ADP-, collagen-, and thrombin-induced platelet aggregation, with $IC_{50}$ values of 501.1, 637.2, and > $2,000{\mu}g/mL$, respectively. The platelet aggregation induced by ADP plus RBLp ($750{\mu}g/mL$) was increased by the adenylate cyclase inhibitor, SQ22536, and the cAMP-dependent protein kinase (A-kinase) inhibitor, Rp-8-Br-cAMPS. Treatment with RBLp increased the phosphorylation of VASP ($Ser^{157}$), an A-kinase substrate, which was also inhibited by SQ22536 and Rp-8-Br-cAMPS. It is thought that the RBLp-induced increases in cAMP contributed to the phosphorylation of VASP ($Ser^{157}$), which in turn resulted in an inhibition of ADP-induced platelet aggregation, thereby indicating that RBLp has an antiplatelet effect via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). Thus, RBLp may have therapeutic potential for the treatment (or prevention) of platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

The Antithrombotic Effects of Green Tea Catechins (녹차 카테킨류의 항혈전 효과)

  • 윤여표;강원식;이미애
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.2
    • /
    • pp.77-82
    • /
    • 1996
  • Green tea catechins(GTC) were studied for its inhibitory effect on human platelet aggregation in vitro, for its antithrombotic effect in mice in viro, and bleeding and clotting time in rats. The catechins were isolated and purified from green tea, which were composed of (-)-epigallocatechin gallate, (-)-epigallocatechin, (-)epicatechin gallate and (-)-epicatechin, GTC produced a potent inhibition of human platelet aggregation in a dose-dependent manner against the stimulants such as ADP, collagen, epinephrine and ristocetin n vitro. GTC also prevented death due to the formation of pulmonary thrombosis by platelet aggregates in mice in a dose-de-pendent manner in viro. GTC increased the bleeding time, whole blood clotting time and plasma clotting time in rats, too. These results suggest that GTC is a promising antithrombotic agent.

  • PDF

LB30057 Inhibits Platelet Aggregation and Vascular Relaxation Induced by Thrombin

  • Jung, Byoung-In;Kang, a-Kyu-Tae;Bae, Ok-Nam;Lee, Moo-Yeol;Chung, Seung-Min;Lee, Sang-Koo;Kim, In-Chul;Chung, Jin-Ho
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.879-884
    • /
    • 2002
  • Previous study showed that an amidrazonophenylalanine derivative, LB30057, which has high water solubility, inhibited the catalytic activity of thrombin potently by interaction with the active site of thrombin. In the current investigation, we examined whether LB30057 inhibited platelet aggregation and vascular relaxation induced by thrombin. Treatment with LB30057 to plateletrich plasma (PRP) isolated from human blood resulted in a concentration-dependent inhibition of thrombin-induced aggregation. Values for $IC_{50}$ and $IC_{100}$ were $54{\pm}4$ nM and $96{\pm}3$ nM, respectively. This inhibition was agonist (thrombin) specific, since $IC_{50}$ values for collagen and ADP were \much greater than those for thrombin. In addition, concentration-dependent inhibitory effects were observed on the serotonin secretion induced by thrombin in PRP. Consistent with these findings, thrombin-induced increase in cytosolic calcium levels was inhibited in a concentration-dependent manner. When LB30057 was treated with aortic rings isolated from rats, LB30057 resulted in a concentration-dependent inhibition of thrombin-induced vascular relaxation. All these results suggest that LB30057 is a potent inhibitor of platelet aggregation and blood vessel relaxation induced by thrombin.

Spinach Saponin-Enriched Fraction Inhibits Platelet Aggregation in cAMP- and cGMP-Dependent Manner by Decreasing TXA2 Production and Blood Coagulation

  • Cho, Hyun-Jeong;Choi, Sun-A;Kim, Chun-Gyu;Jung, Tae-Sung;Hong, Jeong-Hwa;Rhee, Man-Hee;Park, Hye-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.218-223
    • /
    • 2011
  • In this study, we investigated the effect of spinach saponin-enriched fraction (SSEF) on collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation. SSEF inhibited collagen-induced platelet aggregation, and which was involved in the inhibition of thromboxane $A_2$ ($TXA_2$) production, an intracellular $Ca^{2+}$-agonist as an aggregation-inducing autacoidal molecule. In addition, SSEF significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonists as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that SSEF might inhibit $Ca^{2+}$-elevation and $TXA_2$ formation by increasing the production of $Ca^{2+}$-antagonistic molecules cAMP and cGMP. These mean that SSEF is a potent inhibitor of collagen-stimulated platelet aggregation. On the other hand, prothrombin time (PT) and activated partial thromboplastin time (APTT) were potently prolonged by SSEF. These findings suggest that SSEF prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that SSEF may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.