• Title/Summary/Keyword: Inhibition of nitric oxide

Search Result 932, Processing Time 0.018 seconds

Biological activity in hot water extract from fermented Coix lacryma-jobi L. var. mayuen Stapf. by Hericium erinaceum (Bull. : Fr.) (노루궁뎅이균사발효 율무 열수추출물의 유용성분 및 생리활성)

  • Yun, Kyeong-Won;Kim, Kyung-Je;Jin, Seong-Woo;Koh, Young-Woo;Im, Seung-Bin;Ha, Neul-I;Jeong, Hee-Gyeong;Jeong, Sang-Wook;Seo, Kyoung-Sun
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2020
  • This study was conducted to determine the antioxidant, nitrite scavenging, melanin tyrosinase inhibitory, and melanogenesis inhibitory activities of fermented Coix lacryma-jobi L. var. mayuen Stapf. by Hericium erinaceum (Bull.: Fr.) mycelial hot water extract (FCLHE). Additionally, we analyzed β-glucan and ergosterol contents in FCLHE and C. lacryma-jobi hot water extract (CLHE). The ergosterol and β-glucan contents in FCLHE were 740.2 mg% and 245.3 mg%, respectively, whereas these components were not detected in CLHE. FCLHE showed higher cell viability than CLHE. When B16F10 cells were treated with 500 ㎍/mL each of CLHE and FCLHE, the FCLHE treated cells produced 8.9 uM nitric oxide (NO), which was lower than that produced by CLHE treated cells (10.6 uM). The FCLHE treated cells showed significantly greater tyrosinase inhibition and melanin production at all tested concentrations than when compared to the CLHE treated group. Antioxidant parameters such as DPPH and ABTS radical scavenging activities were higher in FCLHE than in CLHE. These results suggest that FCLHE can be used as a raw material for functional foods, for food additives, and in the cosmetic industry.

Regulatory Mechanism of Vascular Contractility by Extracellular $\textrm{K}^{+}$: Effect on Endothelium-Dependent Relaxation and Vascular Smooth Muscle Contractility (세포 외 $\textrm{K}^{+}$의한 혈관 수축신 조절 기전: 혈관평활근 수축성과 내피세포 의존성 이완에 미치는 영향)

  • 유지영;설근희;서석효;안재호
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.210-219
    • /
    • 2004
  • Extracellular $K^{+}$ concentration ([ $K^{+}$]$_{0}$ ) can be increased within several mM by the efflux of intracellular $K^{+}$. To investigate the effect of an increase in [ $K^{+}$]$_{0}$ on vascular contractility, we attempted to examine whether extracellular $K^{+}$ might modulate vascular contractility, endothelium-dependent relaxation (EDR) and intracellular $Ca^2$$^{+}$ concentration ([C $a^2$$^{+}$]$_{i}$ ) in endothelial cells (EC). We observed isometric contractions in rabbit carotid, superior mesenteric, basilar arteries and movse aorta. [C $a^2$$^{+}$]$_{i}$ was recorded by microfluorimeter using Fura-2/AM in EC. No change in contractility was recorded by the increase in [ $K^{+}$]$_{0}$ from 6 to 12 mM in conduit artery such as rabbit carotid artery. whereas resistant vessels, such as basilar and branches of superior mesenteric arteries (SMA), were relaxed by the increase. In basilar artery, the relaxation by the increase in [ $K^{+}$]$_{0}$ to from 1 to 3 mM was bigger than that by the increase from 6 to 12 mM. In contrast, in branches of SMA, the relaxation by the increase in [ $K^{+}$]$_{0}$ to from 6 to 12 mM is bigger than that by the increase from 1 to 3 mM. $Ba^2$$^{+}$ (30 $\mu$M) did not inhibit the relaxation by the increase in [ $K^{+}$]$_{0}$ from 1 to 3 mM but did inhibit the relaxation by the increase from 6 to 12 mM. In the mouse aorta without the endothelium or treated with $N^{G}$_nitro-L-arginine (30 $\mu$M), nitric oxide synthesis blocker, the increase in [ $K^{+}$]$_{0}$ from 6 to 12 mM did not change the magnitude of contraction induced either norepinephrine or prostaglandin $F_2$$_{\alpha}$. The increase in [ $K^{+}$]$_{0}$ up to 12 mM did not induce contraction of mouse aorta but the increase more than 12 mM induced contraction. In the mouse aorta, EDR was completely inhibited on increasing [ $K^{+}$]$_{0}$ from 6 to 12 mM. In cultured mouse aorta EC, [C $a^2$$^{+}$]$_{i}$ , was increased by acetylcholine or ATP application and the increased [C $a^2$$^{+}$]$_{i}$ , was reduced by the increase in [ $K^{+}$]$_{0}$ reversibly and concentration-dependently. In human umbilical vein EC, similar effect of extracellular $K^{+}$ was observed. Ouabain, a N $a^{+}$ - $K^{+}$ pump blocker, and N $i^2$$^{+}$, a N $a^{+}$ - $Ca^2$$^{+}$ exchanger blocker, reversed the inhibitory effect of extracellular $K^{+}$. In resistant arteries, the increase in [ $K^{+}$]$_{0}$ relaxes vascular smooth muscle and the underlying mechanisms differ according to the kinds of the arteries; $Ba^2$$^{+}$-insensitive mechanism in basilar artery and $Ba^2$$^{+}$ -sensitive one in branches of SMA. It also inhibits [C $a^2$$^{+}$]$_{i}$ , increase in EC and thereby EDR. The initial mechanism of the inhibition may be due to the activation of N $a^{+}$ - $K^{+}$pump. activation of N $a^{+}$ - $K^{+}$pump.p.p.p.