DOI QR코드

DOI QR Code

Biological activity in hot water extract from fermented Coix lacryma-jobi L. var. mayuen Stapf. by Hericium erinaceum (Bull. : Fr.)

노루궁뎅이균사발효 율무 열수추출물의 유용성분 및 생리활성

  • 윤경원 (순천대학교 한약자원개발학과) ;
  • 김경제 ((재)장흥군버섯산업연구원) ;
  • 진성우 ((재)장흥군버섯산업연구원) ;
  • 고영우 ((재)장흥군버섯산업연구원) ;
  • 임승빈 ((재)장흥군버섯산업연구원) ;
  • 하늘이 ((재)장흥군버섯산업연구원) ;
  • 정희경 ((재)장흥군버섯산업연구원) ;
  • 정상욱 ((재)장흥군버섯산업연구원) ;
  • 서경순 ((재)장흥군버섯산업연구원)
  • Received : 2019.11.29
  • Accepted : 2020.03.23
  • Published : 2020.03.31

Abstract

This study was conducted to determine the antioxidant, nitrite scavenging, melanin tyrosinase inhibitory, and melanogenesis inhibitory activities of fermented Coix lacryma-jobi L. var. mayuen Stapf. by Hericium erinaceum (Bull.: Fr.) mycelial hot water extract (FCLHE). Additionally, we analyzed β-glucan and ergosterol contents in FCLHE and C. lacryma-jobi hot water extract (CLHE). The ergosterol and β-glucan contents in FCLHE were 740.2 mg% and 245.3 mg%, respectively, whereas these components were not detected in CLHE. FCLHE showed higher cell viability than CLHE. When B16F10 cells were treated with 500 ㎍/mL each of CLHE and FCLHE, the FCLHE treated cells produced 8.9 uM nitric oxide (NO), which was lower than that produced by CLHE treated cells (10.6 uM). The FCLHE treated cells showed significantly greater tyrosinase inhibition and melanin production at all tested concentrations than when compared to the CLHE treated group. Antioxidant parameters such as DPPH and ABTS radical scavenging activities were higher in FCLHE than in CLHE. These results suggest that FCLHE can be used as a raw material for functional foods, for food additives, and in the cosmetic industry.

노루궁뎅이균사로 발효한 율무 열수추출물의 항산화, NO 생성저해, tyrosinase 합성 억제, melanin 생성 저해 및 유용성분 분석을 수행하였다. 노루궁뎅이균사발효율무열수추출물의 ergosterol 함량은 740.2 mg%으로 나타났으며, 원료로 사용한 율무 열수추출물에서는 검출되지 않았다. 노루궁뎅이균사발효율무 열수추출물의 β-glucan 함량은 245.3 ± 5.1 mg%으로 나타났다. 노루궁뎅이균사발효율무 열수추출물은 100%, 104.1%, 107.2%, 105.3%, 102.1%, 101.3%, 100.4%의 세포생존율이 측정되어, 율무열수추출물보다 노루궁뎅이균사발효율무 열수추출물의 세포생존율이 더 높게 나타났다. B16F10 cell 500 ug/mL 농도로 처리했을 때, 노루궁뎅이균사발효율무 열수추출물은 8.9 μM의 NO 생성율을 보여, 율무 추출물(10.6 uM)의 NO생성율 보다 낮은 NO 생성율을 나타내었다. 10, 30, 50, 100, 200, 300 및 500 mg/mL 모든 농도에서 율무 열수추출물보다 노루궁뎅이균사발효율무 열수추출물이 유의적으로 tyrosinase 및 melanin 생성을 억제함을 확인 할 수 있었다. 노루궁뎅이균사발효에 따른 DPPH radical 및 ABTS radical 소거활성 측정결과 노루궁뎅이 균사발효 율무열수추출물이 율무 열수추출물보다 항산화 효과가 높음을 확인하였다. 따라서 추가적인 연구를 통해 노루궁뎅이균사발효 율무열수추출물은 기능성식품 원료와 식품 첨가물, 화장품 산업에 이용될 수 있을 것으로 생각된다.

Keywords

References

  1. Abe N, Nemoto A, Tsuchiya Y, Hojo H, Hirota A. 2000. Study of the 1,1-diphenyl-2-picrylhydrazyl radical scavenging mechanism for a 2-pyrone compound. Biosci Biotech Biochem 64: 306-333. https://doi.org/10.1271/bbb.64.306
  2. Chandrasekaran G, Oh DS, Shin HJ. 2011. Properties and potential applications of the culinary-medicinal cauliflower mushrooms, Sparassis crispa Wulf.:Fr. (Aphyllophoromycetideae): A review. Int J Med Mushrooms 13: 177-183. https://doi.org/10.1615/IntJMedMushr.v13.i2.100
  3. Chen WC, Tseng TS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Lee YC, Lin HH, Tsai KC. 2015. Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep 5: 7995. https://doi.org/10.1038/srep07995
  4. Ekbld A, Wallander H, Nasholm T. 1998. Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas. New Phytol 138: 143-149. https://doi.org/10.1046/j.1469-8137.1998.00891.x
  5. Elsner P, Mailbach HI. 2005. Cosmeceuticals and Active Cosmetics. 2nd Ed, Taylor & Francis, New York, USA.
  6. Han AR, Kang U, Kil YS, Lee J, Seo EK. 2015. Identification of two new lactams from the hulled seeds of Coix lachryma-jobi var. ma-yuen. Bull Korean Chem Soc 36: 2401-2403. https://doi.org/10.1002/bkcs.10456
  7. Han ZH, Ye JM, Wang GF. 2013. Evaluation of in vivo antioxidant activity of Hericium erinaceus polysaccharides. Int J Biol Macromol 52: 66-71. https://doi.org/10.1016/j.ijbiomac.2012.09.009
  8. Hosoi J, Abe E, Suda T, Kuroki T. 1985. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 ${\alpha}$, 25-dehydroxyvitamin D3 and retinoic acid. Cancer Res 45: 1474-1478.
  9. Jia LM, Liu L, Dong Q, Fang JN. 2004. Structural investigation of a novel rhamnoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus. Carbohydr Res 339: 2667-2671. https://doi.org/10.1016/j.carres.2004.07.027
  10. Joung HS, Song KH, Kim AK. 2007. Antimelanogenic effect of taurine in murine melanoma B16F10 Cells. J Pharm Soc Korea 51: 350-354.
  11. Kawagishi H, Shimada A, Hosokawa S, Mori H, Okamoto K, Sakamoto H, Ishiguro Y, Sakemi S, Bordner J, Kojima N, Furukawa S. 1996. Erinacines E, F and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceus. Tetrahedron Lett 37: 7399-7402. https://doi.org/10.1016/0040-4039(96)01687-5
  12. Kim H, Jeong JH, Shin JY, Kim DG, Yu KW. 2011. Immunomodulatory and anti-inflammatory activity of mulberry (Morus alba) leaves fermented with Hericium erinaceum mycelium by solid-state culture. J Korean Soc Food Sci Nutr 40: 1333-1339. https://doi.org/10.3746/jkfn.2011.40.9.1333
  13. Kim HJ, Jang BH, Park KH, Jang GB, Park KM. 2016. Skinwhitening effects of hot water extract from domestic edible mushrooms. J Mushrooms 14: 225-231. https://doi.org/10.14480/JM.2016.14.4.225
  14. Kim JD. 2012. Literature on the quality and effect of Job's tears. Korean J Agric His 11: 89-122
  15. Kim JH. 2012. Biological activities of water extract and solvent fractions of an edible mushroom, Hericium erinaceus. Kor J Mycol 40: 159-163. https://doi.org/10.4489/KJM.2012.40.3.159
  16. Kim JK, Lee HS. 2000. Tyrosinase-inhibitory and radical scavenging activities from the Seeds of Coix lachryma-jobi L. var. ma-yuen Stapf. Korean J Food Sci Technol 32: 1409-1413.
  17. Kim JW, Kim HI, Kim JH, Kwon O, Son ES, Lee CS, Park YJ. 2016. Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum. Int J Mol Sci 17: 1798. https://doi.org/10.3390/ijms17111798
  18. Kim MU, Lee EH, Jung HY, Lee SY, Cho YJ. 2019. Inhibitory activity against biological activities and antimicrobial activity against pathogenic bacteria of extracts from Hericium erinaceus. J Appl Biol Chem 62: 173-179. https://doi.org/10.3839/jabc.2019.024
  19. Kim SC, Kim HS, Cho YU, Ryu JS, Cho SJ. 2015. Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains with higher ${\beta}$-glucan. J Mushroom Sci Prod 13: 79-83. https://doi.org/10.14480/JM.2015.13.1.79
  20. Kim SR, Kim MR. 2012. Physicochemical characteristics and antioxidant activity, antimutagenicity, and cytotoxicity of hotwater extract of Hericium erinaceus. Korean J Food Cook Sci 28: 569-577. https://doi.org/10.9724/kfcs.2012.28.5.569
  21. Kim SS, Kyeong IG, Lee ML, Kim DG, Shin JY, Yang JY, Lee GH, Eum WS, Kang JH. 2014. Antioxidative activities of Artemisia capillaris-fermented Hericium erinaceum mycelium. J Korean Oil Chem Soc 31: 719-730. https://doi.org/10.12925/jkocs.2014.31.4.719
  22. Kim SY, Choi CW, Hong SS, Shin H, Oh JS. 2016. A new neolignan from Coix lachryma-jobi var. mayuen. Nat Prod Commun 11: 229-231.
  23. Kim YS, Joung MY, Ryu BS, Park PJ, Jeong JH. 2016. Anti-Inflammatory activities of extracts from fermented Taraxacum platycarpum D. leaves using Hericium erinaceum mycelia. J Korean Soc Food Sci Nutr 45: 20-26. https://doi.org/10.3746/jkfn.2016.45.1.020
  24. Kuo CC, Chen HH, Chiang W. 2012. Adlay ("soft-shelled job's tears"; the seeds of Coix lachryma-jobi L. var. ma-yuen Stapf) is a potential cancer chemopreventive agent toward multistage carcinogenesis processes. J Tradit Complement Med 2: 267-275. https://doi.org/10.1016/S2225-4110(16)30112-2
  25. Kwon SC. 2011. Biological activities of ethanol extracts from Hericium erinaceus mycelium on Angelica keiskei and Angelica keiskei Pomace. J Korean Soc Food Sci Nutr 40: 1648-1653. https://doi.org/10.3746/jkfn.2011.40.12.1648
  26. Lee EW, Shizuki K, Hosokawa S, Suzuki M, Suganuma H, Inakuma T. Li J, Ohnishi-Kameyama M, Nagata T, Furukawa S, Kawagish H. 2000. Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Biosci Biotechnol Biochem 64: 2402-2405. https://doi.org/10.1271/bbb.64.2402
  27. Lee HD, Lee KS. 2009. ${\beta}$-glucan and glucosamine contents in various cereals cultured with mushroom mycelia. Kor J Mycol 37: 167-172. https://doi.org/10.4489/KJM.2009.37.2.167
  28. Lee TH, Kim HJ, Kim YB. 2003. Depigmentation activity of barley, unpolished rice, Job's- tear. J Korean Med Ophthalmol Otolaryngol Dermatol 16: 57-78.
  29. Lee YM, Bae JH, Jung HY, Kim JH, Park DS. 2011. Antioxidant activity in water and methanol extracts from Korean edible wild plants. J Korean Soc Food Sci Nutr 40: 29-36. https://doi.org/10.3746/jkfn.2011.40.1.029
  30. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  31. Myung JE, Hwang IK. 2008. Functional components and antioxidative activities of soybean extracts. Korea Soybean Digest 25: 23-29.
  32. Nohynek GJ, Antignac E, Re T, Tortain H. 2010. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243: 239-259. https://doi.org/10.1016/j.taap.2009.12.001
  33. Olsson S. 1995. Mycelial density profiles of fungi on heterogeneous media and their interpretation in terms of nutrient reallocation patterns. Mycol Res 99: 143-153. https://doi.org/10.1016/S0953-7562(09)80878-2
  34. Park JS. 2019. Application of pine needle extract as cosmetic material. J Digit Converg 17: 395-400.
  35. Park SA, Kim SJ, Kim HL, Kang HW. 2018. Cultural characteristics and antioxidant activity of wild-type collections of Hericium erinaceus. J Mushrooms 16: 9-15.
  36. Roberta R, Nicoletta P, Anna P, Ananth P, Min Y, Catherine RE. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Bio Med 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  37. Schnurer J. 1993. Comparison of methods for estimating the biomass of three food-borne fungi with different growth patterns. Appl Environ Microbiol 59: 552-555. https://doi.org/10.1128/AEM.59.2.552-555.1993
  38. Seo MS, Jang YA, Lee JT. 2018. The study of cosmeceutical activities from Lentinula edodes extracts and application a natural cosmetic material. JKAST 35: 1003-1012.
  39. Shin HJ, Jeong HG, Hwang DB, Kim DG. 2014. Cudrania tricuspidata root extract as whitening and antiwrinkle cosmetic agent. Korean Chem Eng Res 52: 701-705. https://doi.org/10.9713/kcer.2014.52.6.701
  40. Song MY, Jung HW, Park YK. 2016. Antiobesity effect of water extract of Coix lachryma-jobi var. mayuen in high fat fed C5BL/6 Mice. J Korean Med Obes Res 16: 27-35. https://doi.org/10.15429/jkomor.2016.16.1.27
  41. Weet JD, Gandhi SR. 1996. Biochemistry and molecular biology of fungal sterols. In E. K. Esser & P. A. Lemke. (eds.), The mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research: Vol. III. Biochemistry and molecular biology. Springer. Berlin. 421-438.
  42. Yagi A, Kanbara T, Morinobu N. 1986. The effect of tyrosinase inhibition for aloe. Planta Medica 3981: 517-519.
  43. Yamaguchi T, Takamura H, Matoba T, Terao J. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotech Biochem 62: 1201-1204. https://doi.org/10.1271/bbb.62.1201