• Title/Summary/Keyword: Ingot

Search Result 379, Processing Time 0.02 seconds

The Development of Manufacturing Technology of Aluminum Cryostat for Superconducting Cable (초전도 케이블용 Aluminum Cryostat 제조기술 개발)

  • 김수연;이창호;김도운;장현만;김동욱
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.243-245
    • /
    • 2003
  • The method to fabricate the cryostat of superconducting cable is extrusion type which is used Aluminum ingot under high temperature such as 45$0^{\circ}C$ and the cryostat is formed above cable core and MLI layer. In this case, it is expected to occur thermal injury in cable core and MLI layer, so it is necessary to study to prevent thermal injury. So in this paper, using simulation on radiation and convection which are accompany with fabricating cryostat, it is suggested to reduce the thermal injury. By measuring simulation temperature and real temperature, it is possible to check the temperature on cable core and MLI layer and using these temperature, it is possible to predict whether thermal injury is occurred or not on cable core and MLI layer.

  • PDF

Effects of Forced Self Driving Function in Silicon Wafer Polishing Head on the Planarization of Polished Wafer Surfaces (실리콘 웨이퍼 연마헤드의 강제구동 방식이 웨이퍼 연마 평탄도에 미치는 영향 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • Since the semiconductor manufacturing requires the silicon wafers with extraordinary degree of surface flatness, the surface polishing of wafers from ingot cutting is an important process for deciding surface quality of wafers. The present study introduces the development of wafer polishing equipment and, especially, the wafer polishing head that employs the forced self-driving of installed silicon wafer as well as the wax wafer mounting technique. A series of wafer polishing tests have been carried out to investigate the effects of self-driving function in wafer polishing head. The test results for wafer planarization showed that the LLS counts and SBIR of polished wafer surfaces were generally improved by adopting the self-driven polishing head in wafer polishing stations.

GaN epitaxial growths on chemically and mechanically polished sapphire wafers grown by Bridgeman method (수평 Bridgeman법으로 성장된 사파이어기판 가공 및 GaN 박막성장)

  • 김근주;고재천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.350-355
    • /
    • 2000
  • The fabrication of sapphire wafer in C plane has been developed by horizontal Bridgeman method and GaN based semiconductor epitaxial growth has been carried out in metal organic chemical vapour deposition. The single crystalline ingot of sapphire has been utilized for 2 inch sapphire wafers and wafer slicing and lapping machines were designed. These several steps of lapping processes provided the mirror-like surface of sapphire wafer. The measurements of the surface flatness and the roughness were carried out by the atomic force microscope. The GaN thin film growth on the developed wafer was confirmed the wafer quality and applicability to blue light emitting devices.

  • PDF

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

A Study on Ozone Micro Bubble Effects for Solar Cell Wafer Cleaning (신개념 태양전지 세정용 오존마이크로 버블에 관한 연구)

  • Yoon, Jong-Kuk;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.94-98
    • /
    • 2012
  • The behavior of ozone micro bubble cleaning system was investigated to evaluate the solution as a new method of solar cell wafer cleaning in comparison with former conventional RCA cleaning. We have developed the ozone dissolution system in the ozonated water for more efficient cleaning conditions. The optimized cleaning conditions for solar cell wafer process were 10 ppm of ozone concentration and 12 minutes in cleaning periods, respectively. We have confirmed the cleaning reliability and cell efficiencies after ozone micro bubble cleaning. Using this new cleaning technology, it was possible to obtain higher efficiency, higher productivity, and fast tact time for applying cleaning in the fields on bare ingot wafer, LED wafers as well as the solar cell wafer.

Characteristics of Reduced Metal from Spent Oxide Fuel by Lithium

  • Kim Ik-Soo;Seo Chung-Seok;Shin Hee-Sung;Hwang Yong-Soo;Park Seong-Won
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.309-317
    • /
    • 2003
  • The mass balance of the unit processes of the Advanced spent fuel Conditioning Process was calculated to obtain basic information. Based on this mass balance, the changes in decay heat and radioactivity of the spent fuel due to the metallization in the high temperature molten salt system were estimated. The decay heat and the radioactivity were calculated by using the ORIGEN2 computer code, and the result showed that the decay heat and the radioactivity of the metallized spent fuel ingot were $24.27\%\;and\;24.24\%$, respectively, compared to those of oxide spent fuel.

Open Die Forging of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 자유단조)

  • Kim D. Y.;Kim Y. D.;Kim D. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.565-569
    • /
    • 2005
  • Reactor Vessel is one of the most important structural parts of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings have been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the open die forging process and manufacturing experience of large head forgings which can be used for the reactor vessel of 1,000MW nuclear power plant.

Development Trend of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 개발동향)

  • Kim D. K.;Kim D. Y.;Kim Y. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.06a
    • /
    • pp.131-139
    • /
    • 2005
  • Reactor Vessel is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings has been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the development trend of the open die forging process and manufacturing experience of large head forgings which canl be used for the reactor vessel of nuclear power plant.

  • PDF

Open Die Forging of the Large Head Forgings for Reactor Vessel (원자로용 대형 헤드 단강품의 자유단조)

  • Kim D. Y.;Kim Y. D.;Kim D. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.397-400
    • /
    • 2005
  • Reactor Vessel is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings has been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the open die forging process and manufacturing experience of large head forgings which cant be used for the reactor vessel of 1,000MW nuclear power plant.

  • PDF

FE-Analysis on void closure behavior during hot open die forging process (주단조품의 기공형태에 따른 기공압착거동에 관한 연구)

  • Lee, Y.S.;Kwon, Y.N.;Lee, J.H.;Lee, S.W.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • The studies for internal void closure have been conducted experimentally and numerically for open die forging. The FEM analysis is performed to investigate the deformation behavior of some internal voids in cast ingots during two upsetting stages. The calculated results of void closure behavior are compared with the measured results before and after upsetting. The shapes and sizes of each internal void are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the types of void. Closed voids could be compressed and eliminated after forging when the applied deformation amounts were larger than the critical effective strains. On the other hand, open voids could not be compressed and removed.

  • PDF