• Title/Summary/Keyword: Infrastructure WLANs

Search Result 11, Processing Time 0.026 seconds

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Link Layer Traffic Control Algorithm to Improve the Performance of WLANs (무선 랜 성능 향상을 위한 링크 계층 트래픽 제어 알고리즘)

  • Choi, Sun-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.758-765
    • /
    • 2008
  • Wide-spread deployment of infrastructure WLANs has made Wi-Fi an integral part of today's Internet access technology. WLANs suffer from degraded system throughput and each node's throughput fluctuates significantly in the saturation regime. In this paper, we propose a link layer traffic control mechanism which controls the offered load of DCF system. It is shown that the link layer traffic controller can improve DCF system throughput and reduce nodes' throughput fluctuation with properly controlled offered load. We propose a dynamic traffic control algorithm which can find an optimal offered load and show its performance improvement with ns-2 simulation.

A Study on the Advancement Planning of Telecommunications Infrastructure of Educational Facilities for e-Learning (e-러닝을 위한 교육시설의 정보통신 인프라 고도화 계획에 관한 연구)

  • Park, Tong-So;Park, Chan-Joo;Kang, Hee-Su
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • As a study on the advancement planning for the telecommunications infrastructure of the educational facilities for the purpose of the proliferation of e-learning, this study was conducted with the intents of preparing for the design guidelines to be considered in the initial stage of an architectural design for applying WLANs(wireless LANs), which play a role as the international standard for next generation of telecommunications, to the educational facilities and of making a proposal for changes of the existing computer rooms according to the appearance of new teaching and learning tools, for example, digital textbooks, and the proliferation of personal information devices. In this study, the design guidelines were made by analyzing the elements to be applied to architecture designs as well as understanding the trend of the cabling, pathways and spaces requirements in the area of telecommunications after examining the relevant international standards, such as ANSI and TIA, etc., in order for applying WLANs to the educational facilities. In addition, a field survey was conducted targeting on the elementary schools in 'C' city in order to suggest a proposal for the improvements of operations and maintenance of the existing computer labs and computers. As the results of analyzing the data from the field study, it was surveyed that the following matters should be urgently improved in order for the schools to be developed as Ubiquitous schools in the future: First, the biggest hold-up is how to maintain the desktop computers well. Second, there are some limitations far the students to use the computers enough due to the lack of the number of computers. Third, the computer education for the students is limited to instructing the students in training themselves only for the functions of each kind of application software.

Physical Layer Diversity and its Effects on the Performance of WLANs (물리 계층의 다양성과 무선 랜의 성능에 미치는 영향)

  • Choi, Sunwoong;Park, Kihong;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.723-731
    • /
    • 2005
  • Wide spread deployment of infrastructure WLANs has made Wi Fi an integral part of today's Internet access technology. Despite its crucial role in affecting end to end performance, past research has focused on MAC protocol enhancement, analysis and simulation based performance evaluation without sufficient consideration for modeling inaccuracies stemming from inter layer dependencies, including physical layer diversity, that significantly impact performance. We take a fresh look at IEEE 802.11 WLANs, and using experiment, simulation, and analysis demonstrate its surprisingly agile performance traits. Contention based MAC throughput degrades gracefully under congested conditions, enabled by physical layer channel diversity that reduces the effective level of MAC contention. In contrast, fairness and jitter significantly degrade at a critical offered load. This duality obviates the need for link layer flow control for throughput improvement but necessitates traffic control for fairness and QoS. We use experimentation and simulation in a complementary fashion, pointing out performance characteristics where they agree and differ.

A Token-Ring-Based MAC Protocol in IEEE 802.11 WLANs (IEEE 802.11 무선 랜에서의 토큰링 기반의 매체 접속 제어 프로토콜)

  • Lee, Eun Guk;Rhee, Seung Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.1
    • /
    • pp.38-40
    • /
    • 2014
  • In this paper, proposed method achieves delay reduction and throughput improvement by utilizing token-ring method in infrastructure network. Access Point gives token passing effect by successively transmitting ACK frame including a node's Association ID. Not only can this method considerably reduce time for medium access, but also improve throughput. Furthermore, AP offers more frequent medium access opportunity to node having highest data queue among nodes associated by AP. these method can evenly offer medium access opportunity according to Queue's volumes.

A Fair MAC Algorithm under Capture Effect in IEEE 802.11 DCF -based WLANs (IEEE 802.11 무선랜에서 캡쳐 효과를 고려한 Fair MAC 알고리즘)

  • Jeong, Ji-Woong;Choi, Sun-Woong;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.386-395
    • /
    • 2010
  • Widespread deployment of infrastructure WLANs has made Wi-Fi an integral part of today's Internet access technology. Despite its crucial role in affecting end-to-end performance, past research has focused on MAC protocol enhancement, analysis, and simulation-based performance evaluation without sufficiently considering a misbehavior stemming from capture effect. It is well known that the capture effect occurs frequently in wireless environment and incurs throughput unfairness between nodes. In this paper, we propose a novel Fair MAC algorithm which achieves fairness even under physically unfair environment. While satisfying the fairness, the proposed algorithm maximizes the system throughput. Extensive simulation results show that the proposed Fair MAC algorithm substantially improves fairness without throughput reduction.

The Modified Backoff Algorithm to reduce the number of collisions in the IEEE 802.11 Networks

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.228-232
    • /
    • 2008
  • In recent years, wireless ad hoc networks have become increasingly popular in both military and civilian applications due to their capability of building networks without the need for a pre-existing infrastructure. Recently, IEEE 802.11 Task Group e has been working on a new mechanism, the Enhanced Distributed Coordination Function (EDCF), to enhance the performance of 802.11 DCF. However, EDCF only reduces the internal collisions within a station, and external collisions between stations remain high in ad-hoc networks. In this paper, we propose to adopt an adaptive backoff window control technique, based on a dynamic value of the initial value of the range in which the backoff is chosen, so the backoff timer is randomly chosen in the range (InitRng, CW-1). We use ns-2 simulation to evaluate the throughput of our scheme. Results show that the throughput is improved for our scheme compared to the original DCF due to the reduced the number of collisions.

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.

RRM Optimization for the Throughput Enhancement of WiFi AP (WiFi AP 성능 향상을 위한 무선 자원 관리 최적화)

  • Jeong, Kil Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.131-136
    • /
    • 2012
  • In these days, with the diffusion of mobile equipments, the number of WiFi Access Point (AP) is increasing, and the growth of WiFi AP causes the throughput degradation due to interferences between APs. This recent phenomenon demands the method able to be utilized with current WiFi network to improve the throughput of Wireless LANs. This paper studied the channel assignment method and several throughput enhancement methods to optimize Radio Resource Management (RRM) for distributed infrastructure WLANs. As a result, it was able to put AP independently, improve older allocation error, and improve execution speed.

Enhancing IEEE 802.11 Power Saving Mechanism (PSM) with a Time Slotted Scheme (시분할 방법에 의한 IEEE 802.11 전력관리 메커니즘의 성능향상)

  • Lei, Xiaoying;Rhee, Seung Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.8
    • /
    • pp.679-686
    • /
    • 2013
  • Power efficiency becomes more important in wireless LANs as the mobile stations send more data with limited batteries. It has been known that the IEEE 802.11 PSM is not efficient in high load networks: AP cannot deliver buffered packets to a PS station immediately and it can lead the station to stay in active state quite long and result in energy waste. Moreover, it is inefficient that only one data frame is retrieved by a PS-POLL frame. In this paper, we propose a time slotted scheme to enhance the PSM, in which a mobile station can reserve time slots to receive data frames. Our mechanism can reduce collisions by reservation and decrease the channel occupancy by transmitting multiple data frames via one PS-POLL. The analytic model and simulation results show that proposed scheme reduces power consumption significantly and enhances the performance of PSM.