• Title/Summary/Keyword: Infrared transmittance

Search Result 166, Processing Time 0.031 seconds

Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics

  • Han, Hye Ree
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.4
    • /
    • pp.592-604
    • /
    • 2019
  • This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.

Design and Analysis of Optical Properties of Anti-reflection Coated ZnS Substrates in the Mid-infrared Region (중적외선 영역의 무반사 코팅된 ZnS 기판의 설계와 광학 특성)

  • Park, Buem Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.255-259
    • /
    • 2022
  • In this study, we fabricated ZnS substrates with excellent transmittance in the mid-infrared region (3-5 ㎛) using hot pressing instead of conventional chemical vapor deposition (CVD). Diamond-like carbon (DLC) was coated on either one or both sides of the ZnS substrates to improve their mechanical properties and transmittance efficiency. To reduce the reflectance and further improve transmittance in the mid-infrared region, anti-reflection (AR) coating was designed for DLC/ZnS /AR and AR/ ZnS /AR structures. The coating structure, microstructure, and optical properties of the AR-coated ZnS substrates were subsequently investigated by employing energy dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared (FTIR) spectroscopy. The FTIR spectroscopy results demonstrated that, in the mid-infrared region, the average transmittance of the samples with AR coating on one and both sides increased by approximately 18% and 27%, respectively. Thus, AR coating improved the transmittance of the ZnS substrates.

Fabrication of Electrochromic Devices Using Double Layer Conducting Polymers for Infrared Transmittance Control

  • Kim, Jin Kyu;Koh, Jong Kwan;Kim, Bumsoo;Jeon, Seokwoo;Ahn, Joonmo;Kim, Jong Hak
    • Rapid Communication in Photoscience
    • /
    • v.3 no.2
    • /
    • pp.32-34
    • /
    • 2014
  • We report the performance improvement of electrochromic devices for modulating the transmittance contrast of long wavelength infrared light between 1.5 and 5.0 ${\mu}m$ based on a double layer of conducting polymers. The device, fabricated with poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT) as the first and second layers, respectively, showed an transmittance contrast of 60% with a response rate under 5 s, which is greater than the transmittance contrast of cells based on only P3HT or PEDOT (approximately 40%).

Comparison of blue light, visible light and infrared light transmittance difference of shading Goggles (청색광, 가시광선 및 적외선이 차광보안경에 따라 투과되는 투과율 차이 비교)

  • Jung, In-Ho;Lee, Sang-Deok;Lee, Sook-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-71
    • /
    • 2020
  • Purpose: To know the transmittance of light when wearing shading goggles and to protect eyes from blue light emitted from dental scanner when using CAD/CAM works or inducing polymerization reactions of dental resin with curing unit and infrared light occurred when melting Dental precious metal and non-precious metal alloys. Methods: By measuring and comparing the average transmittances of blue light, visible light and infrared ight by using UV-Vis Spectrophotometer analysis measuring instrument, I compared 3 GREEN Color Goggles worn when casting Dental precious metal and non-precious metal alloys, and compared each of YELLOW, ORANGE Color Goggles worn when using Dental CAD/CAM scanners and Light Curing(LED) the Dental resin. Results: In blue light range, YELLOW Color Goggles are more effective than ORANGE Color Goggles. In infrared light range, No.12 Goggles are more effective than No.10 and No.11 Goggles. Conclusion: When wearing blue light shading goggles to avoid harmful blue light occurred in using dental scanner and curing light, and when wearing infrared light shading goggles to avoid harmful infrared light during casting, to avoid the Side Effects like transmittance rate of blue light and infrared light goggles becomes too high to block appropriate amount of harmful light or too low that causing lower image clarity.

Optical Properties of DLC-coated ZnS Substrates in the Mid-infrared Region (중적외선 영역의 DLC 코팅된 ZnS 기판의 광학 특성)

  • Kwon, Tae-Hyeong;Yeo, Seo-Yeong;Kim, Chang-Il;Nahm, Sahn;Kwon, Min-Chul;Chu, Byoung-Uck;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.101-105
    • /
    • 2019
  • ZnS substrates with excellent transmittance in the mid-infrared region ($3-5{\mu}m$) were prepared using hot pressing instead of conventional chemical vapor deposition (CVD). Diamond-like carbon(DLC) was coated on either one or both sides of the ZnS substrates to improve their mechanical properties and transmittance. More specifically DLC was coated using CVD with an Ar and $C_2H_2$ mixed gas, and Ge was used as the bonding layer. During CVD, the bias voltage was fixed to 500 V and analyzed by Fourier transform infrared spectroscopy (FT-IR), nanoindenter, scanning electron microscope and energy dispersive spectrometry. Results of hardness analysis using the nanoindenter, showed that DLC coating increased from 5.9 to 17.7 GPa after deposition. The FT-IR spectroscopy results showed that, in the mid-infrared region ($3-5{\mu}m$), the average transmittance of the samples with DLC coating on one and both sides increased by approximately 6% and approximately 11.2% respectively. In conclusion, the DLC coating improved the durability and transmittance of the ZnS substrates.

Effect of the East Asian Reference Atmosphere on a Synthetic Infrared Image (동아시아 표준 대기가 합성 적외선 영상에 미치는 효과)

  • Shin, Jong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.97-103
    • /
    • 2006
  • A synthetic infrared image can be effectively utilized in various fields such as the recognition and tracking of targets as long as its quality is good enough to reflect the real situations. One way to improve its quality is to use the reference atmosphere which best describes atmospheric properties of regional areas. The east asian reference atmosphere has been developed to represent atmospheric properties of the east asia including Korean peninsula. However, few research has been conducted to examine the effects of this east asian reference atmosphere on the modeling and simulation. In this regard, this paper analyzes the effects of the east asian reference atmosphere on a synthetic infrared image. The research compares the atmospheric transmittance, the surface temperature, and the radiance obtained by using the east asian reference atmosphere with those of the midlatitude reference atmosphere which has been widely applied in the east asia. The results show that the differences of the atmospheric transmittance, the surface temperature, and the radiance between the east asian reference atmosphere and the midlatitude reference atmosphere are significant especially during the daytime. Therefore, it is recommended to apply the east asian reference atmosphere for generating a synthetic infrared image with targets in the east asia.

Electrical conductivity and stealth characteristics of copper-sputtered clothing materials - Focusing on changes in the pore size of clothing materials - (구리 스퍼터링 의류소재의 전기전도성과 스텔스 특성 - 의류소재 기공 크기 변화를 중심으로 -)

  • Hye Ree Han
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.107-123
    • /
    • 2023
  • This research studied the electrical characteristics, IR transmission characteristics, stealth functions, and thermal characteristics of infrared thermal-imaging cameras of copper-sputtered samples. Nylon samples were prepared for each density as a base material for copper-sputtering treatment. Copper-sputtered NFi, NM1, NM2, NM3, NM4, and NM5, showed electrical resistance of 0.8, 445.7, 80.7, 29.7, 0.3, and 2.2 Ω, respectively, all of which are very low values; for the mesh sample, the lower the density, the lower the electrical resistance. Measuring the IR transmittance showed that the infrared transmittance of the copper-sputtered samples was significantly reduced compared to the untreated sample. Compared to the untreated samples, the transmittance went from 92.0-64.1%. When copper sputtered surface was directed to the IR irradiator, the IR transmittance went from 73.5 to 43.8%. As the density of the sample increased, the transmittance tended to decreased. After the infrared thermal imaging, the absolute values of △R, △G, and △B of the copper phase increased from 2 to 167, 98 to 192, and 7 to 118, respectively, and the closer the density of the sample (NM5→NFi), the larger the absolute value. This proves that the dense copper phase-up sample has a stealth effect on the infrared thermal imaging camera. It is believed that the copper-sputtered nylon samples produced in this study have applications in multifunctional uniforms, bio-signal detection sensors, stage costumes, etc.

Analysis on Infrared Stealth Performance of Metal Nano-coating on Radome Surface (레이돔 표면에 금속 나노코팅을 적용한 적외선 저피탐 성능특성 연구)

  • Lee, Yongwoo;Chang, Injoong;Nam, Juyeong;Bae, Hyung Mo;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • Infrared stealth technology used in aircraft is applied to reduce the infrared signal by controlling surface temperature and emissivity using internal heat sink, low emissivity material or metamaterial. However, there is one part of the aircraft where the use of this technology is limited, and that is the radome. Especially, radome should have transmittance for the specific radio frequency, therefore, common stealth technology such as emissivity control surfaces cannot be applied to radome surface. In this study, we developed metal nano-coating for infrared stealth which is applicable to radome surface. We designed slot-type pattern for frequency selective transmission in X-band, and also controlled thickness of metal nano-coating for long wavelength infrared emissivity control. As a result, our infrared stealth surface for radome has 93.2 % transmittance in X-band and various infrared emissivities from 0.17 to 0.57 according to nano-coatings thickness. Also, we analyzed infrared signature of radome through numerical simulation, and finally reduced contrast radiant intensity by 97.57 % compared to polyurethane surface.

Optical Properties of Long Wave Infrared Spoof Plasmon using Hexagonal Periodic Silver Hole Arrays

  • Lee, Byungwoo;Kwak, Hoe Min;Kim, Ha Sul
    • Applied Science and Convergence Technology
    • /
    • v.25 no.2
    • /
    • pp.42-45
    • /
    • 2016
  • A two-dimensional metal hole array (2DMHA) structure is fabricated by conventional photo-lithography and electron beam evaporation. The transmittance of the 2DMHA is measured at long wave infrared (LWIR) wavelengths (${\lambda}{\sim}10$ to $24{\mu}m$). The 2DMHA sample shows transmittance of 70 and 67% at $15.4{\mu}m$ due to plasmonic resonance with perforated silver and gold thin films, respectively, under surface normal illumination at LWIR wavelengths. The measured infrared spectrum is separated into two peaks when the size of the hole becomes larger than a half-pitch of the hole array. Six degenerated plasmon modes (1,0) at the metal/Si surface split to three modes at an incident beam angle of $45^{\circ}$ with respect to the surface normal direction, and wavelength shifts of the transmitted spectrum are observed in a red shift and blue shift at the same time.

Discrimination and Quantitative Analysis of Watercore in Apple Fruit by Near Infrared Transmittance Spectroscopy

  • Kim, Eun-Ok;Sohn, Mi-Ryeong;Kwon, Young-Kil;Lin, Gou-Lin;Cho, Rae-Kwang
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1529-1529
    • /
    • 2001
  • The watercore in apple is very important factor in storage and sorting of fruit. Most consumers tend to prefer the apple included watercore in immediately after harvest, however the watercore causes fruit flesh to brown during storage and lose the worth after all. But it is practically impossible to judge to the naked eye whether an apple has watercore or not. Therefore, the rapid, accurate and non-destructive analysis method for discrimination of watercore should be settled without delay. In this study we attempted the discrimination and quantitative analysis of watercore in apple fruit using near-infrared transmittance spectroscopy ‘Fuji’ apple fruits produced in Kyungpook of Korea was used in this experiment. The watercore content in apple was evaluated by graphic treatment of culled slice sections(10 mm). NIR transmittance spectra were collected over the 500 to 1000 nm spectral region with a spectrometer (Sentronic Co., Germany). The calibration models were carried out by partial least squares (PLS) analysis between NIR spectra data of apples and chemical data of watercore content. The spectra were different in absorbance between apple included watercore and not included one. Apple included watercore had higher absorption band than sample not included one at 732 and 820 nm. The calibration model seems to be accurate to predict the watercore content in apple fruit, the correlation coefficient (R) and root mean square error of prediction (RMSEP) were 0.99 and 0.93%, respectively. This result indicates that the PLSR calibration model by using NIR transmittance spectroscopy could be used for discrimination of watercore in apple fruit.

  • PDF