• Title/Summary/Keyword: Infrared thermal

Search Result 1,308, Processing Time 0.03 seconds

The design methods of Infrared Camera with Continuous zoom

  • Son, Seok-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, we propose an efficient design method for a thermal camera with continuous zoom based on the research and manufacturing experience of the thermal camera. In addition, it is divided into system design method, optical design method, mechanical design method, and electronic design method. First, we propose an effective NUC compensation method and a lens-specific sensitivity design method in terms of system. Second, we propose a zoom trajectory design method considering the temperature effect on the optical aspect. Third, it suggests the minimization of optical axis shaking between magnification conversion in terms of mechanism. Finally, we propose a lens-specific temperature compensation method and a speed conversion algorithm according to the zoom interval as an electronic aspect.

Wide-angle optical design using high-resolution uncooled thermal detector

  • Lee, Jonghoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, we propose efficient design and construction of an infrared wide angle optical system with low distortion utilizing a high resolution detector for automobile application. The operational convenience and the recognition ability have been improved significantly by applying the high resolution uncooled thermal detector with wide angle optical design. The active ahtermalization mechanism is implemented so that the adjustment of the optical component of the system is to be made automatically according to the temperature change by motorized control. The modulation transfer function (MTF) is about 50% at the Nyquist frequency close the diffraction limit. The distortion is less than 5% at the edge field. As a result, a high-resolution uncooled thermal optical system with wide field of view (FOV) is assembled, aligned and its performance is tested successfully.

Retrieving Land surface Component Temperature Using Multi-Angle Thermal Infrared Data

  • Wenjie, Fan;Xiru, Xu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1362-1364
    • /
    • 2003
  • As non-isothermal mixed pixel is widely existed, the pixel-mean temperature cannot adequately represent the actual thermal state of land surface. The row crop was chosen as target to discuss the problem of component temperature retrieval. At first, the matrix model was found to express the thermal radiant directionality of the target. Then correlation of multi-angle infrared radiance was analyzed. In order to increase the retrieving accuracy, we chose the retrievable parameters and established the iterative method combining with inverse matrix to retrieve component temperature. It was proved by field experiment that the method could improve the retrieving accuracy and stability remarkably.

  • PDF

Physico-Chemical Properties of Natural Zeolite -On the Zeolite from Kampo Area- (천연 제올라이트의 물리화학적 성질 -경북 감포산 제올라이트에 관하여-)

  • 조승래;이홍기;이주성;심미자;김상욱
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.334-340
    • /
    • 1993
  • The physico-chemical properties and characteristics after thermal treatment of natural zeolite from Kampo area were studied. The physico-chemical properties of natural zeolite were studied by investigating chemical composition, x-ray diffraction pattern(XRD), scanning electronic microscope(SEM), infrared spec-tra(IR), thermal analysis(TA), and cation exchange capacity(C.E.C.), and the characteristics of natural zeo-lite after thermal treatment from $400^{\circ}C$ to $900^{\circ}C$ were compared with the natural zeolite. This study showed that clinoptilolite was the predominant costituent in natural zeolite, and the natural zeolite contained a little amount of quartz and feldspar as impurities. Zeolite mineral was seen to develop slowly by the natural alternation of volcanic ash considering the almost amorphous crystal structure. The more temperature of ther-mal treatment increased, the more adsorption capacity decreased, considering the fact that the hydroxy peak diminished on infrared spectra, and that cation exchange capacity also decreased distinctly.

  • PDF

Comparison of Land Surface Temperatures from Near-surface Measurement and Satellite-based Product

  • Ryu, Jae-Hyun;Jeong, Hoejeong;Choi, Seonwoong;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.609-616
    • /
    • 2019
  • Land surface temperature ($T_s$) is a critical variable for understanding the surface energy exchange between land and atmosphere. Using the data measured from micrometeorological flux towers, three types of $T_s$, obtained using a thermal-infrared radiometer (IRT), a net radiometer, and an equation for sensible heat flux, were compared. The $T_s$ estimated using the net radiometer was highly correlated with the $T_s$ obtained from the IRT. Both values acceptably fit the $T_s$ from the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)satellite. These results will enhance the measurement of land surface temperatures at various scales. Further, they are useful for understanding land surface energy partitioning to evaluate and develop land surface models and algorithms for satellite remote sensing products associated with surface thermal conditions.

Observation of the Cold-air Drainage and Thermal Belt Formation in a Small Mountainous Watershed by Using an Infrared Imaging Radiometer (적외선 영상 복사계를 이용한 산간집수역의 찬공기 배수와 온난대 형성 관측)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.79-86
    • /
    • 2011
  • Cold-air drainage and pooling occur in most mountain valleys at night. Local climates with cold-air pooling could affect phenology and distribution of crop plants. A high resolution infrared imaging radiometer was used to visualize the cold-air drainage and thermal belt formation over a small mountainous watershed (ca. $10{\times}5{\times}1$ km for the maximum length${\times}$width${\times}$depth). Thermal images on $640{\times}480$ pixels were scanned across the Akyang valley (south of Mt. Jiri National Park) by the radiometer installed at a local peak ('Hyongjebong', 1,117 m a.s.l.) at dawn of 17 May 2011, when the synoptic condition was favorable for the surface cooling and cold-air drainage. Major findings are: (1) Cold-air drainage and accumulation was clearly identified by the lowest brightness temperature mainly at the valley bottom. (2) So-called 'thermal belt' with higher brightness temperature was found partway up the valley sidewalls and showed up to $5^{\circ}C$ departure from the valley bottom temperature. (3) Digital thermography showed feasibility for validation of the high definition geospatial temperature models currently in use for the plot-specific agrometeorological service.

Clinical predictive diagnostic study on prognosis of Bell's palsy with the Digital Infrared Thermal Image (적외선 체열진단법을 이용한 Bell's palsy의 임상적 예후 진단 연구)

  • Song, Beom-Yong
    • Journal of Acupuncture Research
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2001
  • The Background and Purpose : Most diagnostic method for the facial palsy were invasive and complex. And we don't know very well prognosis for the recovery of facial palsy in the first stage after the onset. But the Digital Infrared Thermal Image(DITI) isn't invasive and complex diagnostic method for the facial palsy. So we should study on the clinical prognostic diagnosis of Bell's palsy among facial palsy with the DITI. Objective and Methods : This study researched into the clinical statistics for 89 case who are in Bell's palsy, and they are treated with oriental medical care at the Woosuk university during 2 years form November 1998 to October 2000. All objectives have the Grade 6(Zero state) of Bell's palsy in first week after the onset. It takes a patient's facial temperature after the onset. Group A is taken from 1 day to 4 days after the onset. Group B is taken from 5 day to 8 days after the onset. And group C is taken from 9 day to 12 days after the onset. Results and Conclusions : The Digital Infrared thermal image technique showed the more high temperature, the more rapid cure and short treatment period on TE23, B2, S3, S6 in abnormal site of Bell's palsy. But it showed the more low temperature, the more rapid cure and short treatment period on TE17 of abnormal site of Bell's palsy. As a conclusion, we could think that the prognostic diagnosis of Bell's palsy closely related with the thermal difference normal and abnormal site of Bell's palsy that were took picture after the onset.

  • PDF

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Investigation of Frozen Rock Failure using Thermal Infrared Image (열적외선영상을 이용한 동결된 암석의 파괴특성 연구)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.144-154
    • /
    • 2015
  • Mechanical energy is accumulated in the object when stress is exerted on rock specimens, and the failure is occurred when the stress is larger than critical stress. The accumulated energy is emitted as various forms including physical deformation, light, heat and sound. Uniaxial compression strength test and point load strength test were carried out in low temperature environment, and thermal variation of rock specimens were observed and analyzed quantitatively using thermal infrared camera images. Temperature of failure plane was increased just before the failure because of concentration of stress, and was rapidly increased at the moment of the failure because of the emission of thermal energy. The variations of temperature were larger in diorite and basalt specimens which were strong and fresh than in tuff specimens which were weak and weathered. This study can be applied to prevent disasters in rock slope, tunnel and mine in cold regions and to analyze satellite image for predicting earthquake in cold regions.

A Study on Application of Remote Sensing for Thermal Plume Analysis (온배수 확산분석을 위한 Remote Sensing 활용에 관한 연구)

  • Yeu, Bock-Mo;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.185-194
    • /
    • 1993
  • In this research, the image obtained by TM platformed in the LANDSAT-5 and the terrestrial infrared image obtained by the Thermo Tracer were employed in order to search the distribution of industrial thermal plume discharged into seas. Sea surface temperature distributions were deduced based on the infrared band 6 in the TM image of the LANDSAT by employing the transformal formula provided by the CSFC of the NASA and post-calibration values. The temperature distributions were also obtained with the processing mode of the TH1100 series from the terrestrial thermal image or the Thermo tracer. According to the results of the image analyses with this methods, it was found that sea surface temperatures in shallow coastal area largely affected by the temperatures of the freshwater and inland and that the range and the area of distribution of the thermal plume can be visualized quantitatively. Furthermore, when the terrestrial thermal infrared scanner is used, the more details of the distribution range can be obtained, and the image results are comparable to those obtained from the LNADSTA.

  • PDF