• Title/Summary/Keyword: Infrared sensing

Search Result 475, Processing Time 0.028 seconds

A Multi-Channel Gas Sensor Using Fabry-Perot Interferometer-Based Infrared Spectrometer

  • Choi, Ju Chan;Lee, June Kyoo;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.402-407
    • /
    • 2012
  • We report a Fabry-Perot interferometer (FPI)-based multi-channel micro-spectrometer used for multi-gas measurement in the spectral range of $3-5{\mu}m$ and its gas sensing performance. The fabricated infrared (IR) spectrometer consists of two parts: an FPI on the top side for selective IR filtering and a $V_2O_5$-based IR detector array on the bottom side for the detection of the filtered IR. Experimental results show that the FPI-based multi-channel gas sensor has reliability and selectivity for simultaneously detecting environmentally harmful gases such as $CH_4$, $CO_2$, $N_2O$ and CO in the spectral range of $3-5{\mu}m$. The fabricated FPI-based multi-channel gas sensor also demonstrated that a reliable and selective detection of gas concentrations ranging from 0 to 500 ppm is feasible. In addition, the electrical characteristics demonstrate a superior response performance in regards to the selectivity in the multi-target gases.

A Study on Monitoring for Process Parameters Using Isotherm Radii (등온선 반경을 이용한 공정변수 모니터링에 관한 연구)

  • Kim, Ill-Soo;Chon, Kwang-Suk;Son, Joon-Sik;Seo, Joo-Hwan;Kim, Hak-Hyoung;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.

COMPARISONS OF MTSAT-1R INFRARED CHANNEL MEASUREMENTS WITH MODIS/TERRA

  • Han, Hyo-Jin;Sohn, Byung-Ju;Park, Hye-Suk
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.651-654
    • /
    • 2006
  • Infrared channels of newly launched Japanese geostationary satellite, MTSAT-1R are compared with well calibrated MODIS/Terra infrared measurements at 3.7, 6.7, 11, 12 ${\mu}m$ bands. There are four steps in this intercalibration method: 1) data collection, 2) spectral response function correction, 3) data collocation, and 4) calculation of mean bias and conversion coefficients. In order to minimize the navigation error of MTSAT-1R, comparisons are made over the area in which the viewing angle of MTSAT-1R is less than 50$^{\circ}$. The calibration method was tested for August 2005 and within the 40$^{\circ}N$-40$^{\circ}S$, 100$^{\circ}$E-180$^{\circ}$E domain. The differences of spectral response functions were corrected through radiative transfer model simulation. Constructing collocated data differences in viewing geometry, observation time and space were taken into account. In order to avoid the radiance variation induced by cloud presence, clear-sky targets are selected as intercalibration target. The mean biases of 11, 12, 6.7, and 3.7 ${\mu}m$ bands are about -0.16, 0.36, 1.31, and -6.69 K, suggesting that accuracies of 3.7 ${\mu}m$ is questionable while other channels are comparable to MODIS

  • PDF

Flip Chip Bonder for Automactic Parallel Aligning of IR Sensors and Read Out Integrated Circuits (적외선 센서/ROIC 접합을 위한 자동 평행 배열 방식의 플립 칩 본더)

  • Suh, Sang-Hee;Kim, Jin-Sang;An, Se-Young
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.337-342
    • /
    • 2001
  • Infrared sensors with one or two dimensional arrays are usually bonded via indium bumps to Si CMOS read out circuits. Therefore, both sensing of infrared beams and processing of signals are performed at the focal plane. This gives us a benefit of reducing noise as well as size of infrared detectors. We have developed a way of boding indium bumps with keeping sensor and ROIC parallel to each other. The flip chip bonder developed has a very simple structure and is easy to operate. So we expect that reliability will be improved very much.

  • PDF

Human detecting pyroelectric infrared sensor system using new electrode design (새로운 전극 설계법을 이용한 인체 감지형 초전형 적외선 센서 시스템)

  • 권성열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.74-78
    • /
    • 2002
  • For human detecting pyroelectric infrared sensor system using more than 2 sensor devices. By new top and bottom electrode design, 1 sensor can sensing human instead of using 2 sensor system. The poled P(VDF/TrFE) film used for sensor pyroelectric materials. The fabricated sensors NEP (noise equivalent power) and specific detectivity D$^*$ of the device were 9.62 $\times$ 10$10^5$ V/W, 3.95 $\times$ 10$10^-175$ W and 5.06 $\times$ 10$10^5$W under emission energy of 13 ${\mu}W/cm^2$ respectively and It's result is almost same result that using more than 2 sensor system for human detecting.

  • PDF

Development of on Intelligent Automatic Door System Using Ultrasonic Sensors (초음파센서를 이용한 지능형 자동문시스템 개발)

  • Song, Dong-Hyuk;Chang, Byong-Kun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.31-39
    • /
    • 2009
  • This paper proposes an ultrasonic sensor based intelligent automatic door system which improves the performance of conventional door systems by adding more intelligent functions such that it offers more convenience to passersby and reduces power loss. The conventional automatic door systems employed passive and active infrared sensors for detecting objects and human bodies. But, they have problems such as power loss in door closing, not sensing fast approaching objects, and safety. The proposed automatic door system with ultrasonic sensors prevents unnecessary door closings to save the power and senses fast approaching objects to open the door at proper time, and improves safety. Thus, the proposed system improves the performance of the conventional systems in terms of operation, economy, and safety.

Effectiveness of Using the TIR Band in Landsat 8 Image Classification

  • Lee, Mi Hee;Lee, Soo Bong;Kim, Yongmin;Sa, Jiwon;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.203-209
    • /
    • 2015
  • This paper discusses the effectiveness of using Landsat 8 TIR (Thermal Infrared) band images to improve the accuracy of landuse/landcover classification of urban areas. According to classification results for the study area using diverse band combinations, the classification accuracy using an image fusion process in which the TIR band is added to the visible and near infrared band was improved by 4.0%, compared to that using a band combination that does not consider the TIR band. For urban area landuse/landcover classification in particular, the producer’s accuracy and user’s accuracy values were improved by 10.2% and 3.8%, respectively. When MLC (Maximum Likelihood Classification), which is commonly applied to remote sensing images, was used, the TIR band images helped obtain a higher discriminant analysis in landuse/landcover classification.

A Study on the Productivity Improvement of Thermal Infrared Camera an Optical Lens (열적외선 카메라용 광학계 생산성 향상에 관한 연구)

  • Kim, Sung-Yong;Hyun, Dong-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.285-293
    • /
    • 2009
  • Thermal infrared cameras have been conducted actively in various application areas, such as military, medical service, industries and cars. Because of their characteristic of sensing the radiant heat emitted from subjects in the range of long-wavelength($3{\sim}5{\mu}m$ or $8{\sim}12{\mu}m$), and of materializing a vision system, when general optics materials are used, they don't react to the light in the range of long-wavelength, and can't display their optic functions. Therefore, the materials with the feature of higher refractive index, reacting to the range of long-wavelength, are to be used. The kinds of materials with the characteristic of higher refractive index are limited, and their features are close to those of metals. Because of these metallic features, the existing producing method of optical systems were direct manufacturing method using grinding method or CAD/CAM, which put limit on productivity and made it difficult to properly cope with the increasing demand of markets. GASIR, a material, which can be molded easily, was selected among infrared ray optics materials in this study, and the optical system was designed with two Aspheric lenses. Because the lenses are molded in the environment of high temperature and high pressure, they require a special metallic pattern. The metallic pattern was produced with materials with ultra hardness that can stand high temperature and high pressure. As for the lens mold, GMP(Glass Molding Press) of the linear transfer method was used in order to improve the productivity of optical systems for thermal infrared cameras, which was the goal of this paper.

  • PDF

Evaluations of Mn-Ni-Co type thermistor thin film for thermal infrared sensing element (열형 적외선 센싱소자용 Mn-Ni-Co계 써미스터 박막 특성 평가)

  • 전민석;최덕균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.297-303
    • /
    • 2003
  • Mn-Ni-Co type thin films were prepared at various conditions by a rf magnetron sputtering system. At the condition. or substrate temperature of $300^{\circ}C$ and $Ar/O_2$= 10/0, a cubic spinel phase was obtained. When oxygen was included in process gas, a cubic spinel phase was not formed even after the thermal annealing at $900^{\circ}C$. The thermistor thin film had no other elements except Mn, Ni and Co. The infrared reflection spectra of the thermistor thin films showed that the films had somewhat high reflectance for incoming infrared ray with some angle. The etch rate of the thermistor thin films was about 63nm/min at a condition of DI water : $HNO_3$: HCl = 60 : 30 : 10 vol%. The B constant and temperature coefficient of resistance of the thermistor thin films were 3500 K and -3.95 %/K, respectively. The voltage responsivity of the thermistor thin film infrared sensor was 108.5 V/W and its noise equivalent power and specific detectivity were $5.1\times 10^{-7}$ W/$Hz^{-1/2}$ and $0.2\times 10^6$cm $Hz^{1/2}$/W, respectively.

The Comparison of Thermal Infrared Satellite Observation for Plume Assessment of Thermal Discharge (온배수 확산 평가를 위한 열적외선 위성관측 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • To examine the effect of thermal discharge from nuclear power plants, Sea Surface Temperature (SST) is one of the most important variables measured by satellite remote sensing. However, the study was not much comparison of field data and satellite SST from operational Landsat 8 Thermal Infrared Sensor(TIRS) and Landsat 7 ETM+. The Landsat 8 TIRS have 2 spilt Thermal Infrared channels but ETM+ uses one channel for extracting of SST. In spite of that this research carried out that Landsat 7 ETM+ have more profitable for correction of SST than Landsat 8 TIRS. The used 15 Landsat 7 and 8 Thermal Infrared data of path/row 114-36 were processed by SST algorithm of ENVI and IDL. The in-situ SST data from KHOA(Korea Hydrographic and Oceanographic Administration) compared with satellite SST and the accuracy of extracted SST were assessed by each field sites in-situ point data with time series satellite SST.