• Title/Summary/Keyword: Infrared optics

Search Result 221, Processing Time 0.026 seconds

Sol-gel Derived-highly Transparent c-axis Oriented ZnO Thin Films (졸-겔법에 의한 c-축 배향성을 가진 고투과율 ZnO 박막의 제조)

  • Lee, Young-Hwan;Jeong, Ju-Hyun;Jeon, Young-Sun;Hwang, Kyu-Seog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Purpose: A simple and efficient method to prepare nanocrystalline ZnO thin film with pure strong UV emission on soda-lime-silica glass substrates by low-temperature annealing was improved. Methods: Crystal structural, surface morphological, and optical characteristics of nanocrystalline ZnO thin films deposited on soda-lime-silica glass substrates by prefiring final annealing process at 300$^{\circ}C$ were investigated by using X-ray diffraction analysis, field emission-scanning electron microscope, scanning probe microscope, ultraviolet-visible-near infrared spectrophotometer, and photoluminescence. Results: Highly c-axis-oriented ZnO films were obtained by prefiring at 300$^{\circ}C$. A high transmittance in the visible spectra range and clear absorption edge in the ultra violet range of the film was observed. The PL spectrum of ZnO thin film with a deep near band edge emission was observed while the defect-related broad green emission was nearly quenched. Conclusions: Our work will be possibly adopted to cheaply and easily fabricate ZnO-based optoelectronic devices at low temperature, below 300$^{\circ}C$, in the future.

  • PDF

Analysis of aspheric and diffractive surface effect for long wavelength infrared lens (장파장 적외선 렌즈의 비구면 및 회절면 효과 분석)

  • 김현수;이동한;김현규;이국환
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • We analyzed the aspheric and/or diffractive surface effects to the performance in the long wavelength infrared (8-12 $\mu$m). Also we investigated the dependence of the NA values for the fixed effective focal length 100 mm when the field angle was varied from 5 degrees to 30 degrees stepped by 5 degrees. We chose the merit function as a criteria to compare the performance of the different lenses. Based on the analysis of the aspheric and/or diffractive surface effects, we designed the optical system of F/l.0 for the uncooled thermal imaging system. As for detector the pixel size was 45 $\mu$m square and the number of pixels were a 320${\times}$240 pixels.

The characteristics of Ultra Precision Machine of Optical crystals for Infrared Ray (적외선 광학소자의 초정밀 절삭특성에 관한 연구)

  • Kim G.H.;Yang Y.S.;Kim H.S;Sin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.414-417
    • /
    • 2005
  • Single point diamond turning technique for optical crystals is studied in this paper. The main factors which are influential the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimal machining conditions for ductile cutting of optical crystals and to apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material(Ge). Many technical challenges are being tried for the large space infrared telescope, which is one of the major objectives of the National Strategic Technology Road Map (NSTRM).

  • PDF

Spaceborne Cryogenic Cooler Development Status (우주용 극저온 냉각기 기술개발동향)

  • Kim, Hong-Bae;Lee, Seung-Yup;Lee, Won-Beom;Kim, Gyu-Sun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.48-58
    • /
    • 2009
  • Since 1960s, cryogenic cooling technologies has been adopted in the development of spacecraft with components that must be cooled to cryogenic temperatures of 2 to 150 K. In recent years this technology has been a substantial growth in the emerging number of programs that include such spacecraft to service scientific, military, and weather observation missions. The cooling of optics and detectors to reduce signal noise in infrared (IR) telescopes is the principal applications of cryogenic cooling technologies. The choice of cooling technologies depends on the desired temperature level, the amount of heat to be removed, and the required operating life. This paper will present the status of modern cryogenic cooling technologies especially for space application.

  • PDF

IGRINS : Collimating Mirror Mount Opto-mechanical Design

  • Rukdee, Surangkhana;Park, Chan;Chun, Moo-Young;Yuk, In-Soo;Lee, Sung-Ho;Lee, Han-Shin;Kim, Kang-Min;Jeong, Hwa-Kyung;Strubhar, Joseph;Jaffe, Daniel T.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.4-31
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF

Sensitivity analysis of 20:1 zoom infrared optical system with zernike polynomial coefficients (제르니케(Zernike)계수를 이용한 20:1 줌 적외선 광학계 민감도 분석)

  • 최세철;김현숙;김창우;김연수;이국환;김현규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.535-544
    • /
    • 2003
  • The sensitivity analysis of a middle wave infrared optical system with 20: 1 zoom ratio is performed to analyze manufacturing and alignment tolerances, and to establish the alignment logic and the focus control strategy. The characteristics of the sensitivities of Zernike coefficients are investigated to all mechanical displacements and several zoom positions using Code-V Macro. From this result, the tolerances of manufacturing and alignment of the optical system are derived and the effective alignment logic is established. Futhermore, an effective focus control strategy is established to make the system simple and compact.

IGRINS Mirror Mount Design for Five Flat Mirrors

  • Oh, Jae Sok;Park, Chan;Kim, Kang-Min;Chun, Moo-Young;Yuk, In-Soo;Yu, Young Sam;Oh, Heeyoung;Jeong, Ueejeong;Lee, Hanshin;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.91.2-91.2
    • /
    • 2014
  • A near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS) has been jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. The compact white-pupil design of the instrument optics includes five cryogenic flat mirrors including a slit mirror, an input fold mirror, a dichroic mirror, and H&K camera fold mirrors. In this study, we introduce the optomechanical mount designs of the five cryogenic mirrors. In order to meet the structural stability and thermal requirements of the mount models, we conducted the design work with the aid of 3-dimensional computer modeling and the finite element analysis (FEA) method. We also present the actual fabricated parts and assemblies of the mounts and mirrors as well as their CAD models.

  • PDF

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.

Estimation of the Flavor of Green Soybean during Storage from Single Pod Measurements using Dedicated Near-Infrared Transmission Spectrometer

  • Maebashi, Maki;Natsuga, Motoyasu;Egashira, Hiroaki;Ura, Nobuo;Katahira, Mitsuhiko
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.398-403
    • /
    • 2012
  • Purpose: Green soybeans (edamame) are now an economically important and popular food product in Japan. In order to shorten breeding time and to decide an optimal harvest time, we have been developing a dedicated NIRT spectrometer since 2004 for the determination of constituent content such as sucrose and free amino acids, which are two major contributors to the eating quality, in a single pod green soybean. Methods: The obtained models showed that the developed NIRT instrument had reasonable accuracy for the determination of these two components. Then we carried out the investigation into the change in two components during a few days storage using these models with changing time, variety/cultivar, packaging and temperature. Results: The result showed that the most affecting factor on decreasing both sucrose content and free amino acids was variety/cultivar. The time, packaging and temperature also affected significantly in most cases.

SENSITIVITY CALCULATIONS FOR THE COSMIC IR BACKGROUND OBSERVATIONS BY MIRIS (과학기술위성 3호 다목적 적외선 영상시스템 적외선 우주배경복사 관측 감도 계산)

  • Lee, Dae-Hui;Lee, Seong-Ho;Han, Won-Yong;Park, Jang-Hyeon;Nam, Uk-Won;Jin, Ho;Yuk, In-Su;Park, Yeong-Sik;Park, Seong-Jun;Lee, Hyeong-Mok;Park, Su-Jong;Matsumoto, Toshio;Cooray, Asantha
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.177-181
    • /
    • 2007
  • We present the sensitivity calculation results for observing the Cosmic Infrared Background (CIRB) by the Multi-purpose IR Imaging System (MIRIS), which will be launched in 2010 as a main payload of the Science and Technology Satellite 3 (STSAT-3). MIRIS will observe in I ($0.9{\sim}1.2um$) and H ($1.2{\sim}2.0um$) band with a $4{\times}4$ degree field of view to obtain the large scale structure (${\sim}3$ degree) of the CIRB. With the given specifications of the MIRIS, our sensitivity calculation results show that the MIRIS has a detection limit of ${\sim}9\;nW\;m^{-2}\;sr^{-1}$ (I band) and ${\sim}6\;nW\;m^{-2}\;sr^{-1}$ (H band), which is appropriate to observe the large scale structure of CIRB.