• Title/Summary/Keyword: Infrared lamp

Search Result 118, Processing Time 0.026 seconds

Photocatalytic Oxidation of Han River Humic Substances and Change of Their Characteristics by $TiO_2/UV$ in a Rotating Photoreactor ($TiO_2/UV$ 회전반응기를 이용한 한강 휴믹물질의 광촉매산화 처리 및 특성 변화)

  • Shin, Jee-Won;Kim, Hyun-Chul;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1129-1135
    • /
    • 2005
  • In this study. the applicability of a rotating reactor for the oxidative removal of aqueous humic substances extracted from the Han River in Seoul, Korea was investigated. As air blowing for proper mixing of $TiO_2$ photocatalyst could inhibit UV-irradiation between a UV lamp and photocatalyst by air bubbles, a rotating reactor with some baffles was used for better UV-irradiation effect in this study. Han River humic substances are different from the other commercial humic substances(e.g., from Aldrich and International Humic Substance Society). Their characteristics were investigated with structural and spectroscopic analyses using FT-IR(Fourier transform-infrared), and $^{13}C$-NMR (nuclear magnetic resonance). The humic substances were extracted by XAD-7HP and treated with $TiO_2$-coated hollow beads under UV-A and UV-C irradiation in order to solve problems of separation and recovery of photocatalyst after reaction. At approximately 5 mg/L of initial TOC concentration, pH 3 and $2.0\;g-TiO_2/L$ dose, photocatalytic oxidation of Han River humic substances showed the optimum removal efficiency. Also, UV-C and UV-A lamps showed similar TOC removal efficiency. However, under UV-C irradiation, Han River humic substances were degraded to smaller compounds and increased the proportion of low molecular weight fractions compared to UV-A.

The Study on the Crystal Growing of Mn-Zn Ferrite Single Crystals by Floating Zone Method (Floating Zone법에 의한 Mn-Zn Ferrite 단결정성장에 관한 연구)

  • 정재우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.10-19
    • /
    • 1992
  • Mn - Zn Ferrite has physical properties of the high initial permeability, saturation magnetic flux density, and low loss factor as a representative magnetic material of soft ferrites, in addition the mechanical property is excellent as a single crystal. Therefore it is important electronic components and used for VTR Head. Mn - Zn Ferrite single crystals with the diameter 8mm were grown in atmosphere mixed with $O_2$ and Ar gas by the Floating Zone(FZ) method that impurities can not be incorporated to the crystals because of not-using the crucible to put in the melt, and the sharp temperature gradient results from making a focus at one point utilizing the infrared ray emitted from the halogen lamp as a heat source. During the crystal growing, the highest temperature of melting area was maintained to be $1650^{\circ}C$, growth rate and rotation rate were 10 mm/hr, 20 rpm respectively. The phases and the growth directions of crystals were determined from the analysis of X RD patterns, Laue, TEM diffraction patterns and etch pit shapes were observed by the optical microscope through the chemical etching. The corelation of optimum conditions for acquiring the better crystals was found out with the growth rate, the length and diameter of melt at the interface according to the diameter of feed rod, and the patterns of growing interface also studied.

  • PDF

Changes in Chlorophyll Contents and Net Photosynthesis Rate of 3-year-old Quercus variabilis Seedlings by Experimental Warming (실외 실험적 온난화가 3년생 굴참나무 묘목의 엽록소 함량 및 순광합성률 변화에 미치는 영향)

  • Lee, Sun Jeoung;Han, Saerom;Yoon, Tae Kyung;Jo, Wooyong;Han, Seung Hyun;Jung, Yejee;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.156-160
    • /
    • 2013
  • Global warming affects terrestrial ecosystem productivity including photosynthesis and plant growth. This study was conducted to investigate the effect of experimental warming on chlorophyll contents and net photosynthetic rate of Quercus variabilis Blume seedlings. One-year-old Q. variabilis seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ compared to control plots using the infrared lamp from November 2010. Total chlorophyll contents were higher in warmed plots than those in control plots in May, July, August, September and October, 2012, however, the differences were statistically significant only in October. Net photosynthetic rates were also higher in warmed plots than those in control plots in May (57.0%), September (21.4%), and October (89.6%), however, the differences were significant only in May and October. Higher chlorophyll contents and net photosynthetic rate of warmed plots in spring and fall might be related to the extended growing season length.

Direct Bonding of SillSiO2/Si3N4llSi Wafer Fairs with a Fast Linear Annealing (선형가열기를 이용한 SillSiO2/Si3N4llSi 이종기판쌍의 직접접합)

  • 이상현;이상돈;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • Direct bonded SOI wafer pairs with $Si ll SiO_2/Si_3N_4 ll Si$ the heterogeneous insulating layers of SiO$_2$-Si$_3$N$_4$are able to apply to the micropumps and MEMS applications. Direct bonding should be executed at low temperature to avoid the warpage of the wafer pairs and inter-diffusion of materials at the interface. 10 cm diameter 2000 ${\AA}-SiO_2/Si(100}$ and 560 $\AA$- ${\AA}-Si_3N_4/Si(100}$ wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were pre- mated with facing the mirror planes by a specially designed aligner in class-100 clean room immediately. We employed a heat treatment equipment so called fast linear annealing(FLA) with a halogen lamp to enhance the bonding of pre mated wafers We kept the scan velocity of 0.08 mm/sec, which implied bonding process time of 125 sec/wafer pairs, by varying the heat input at the range of 320~550 W. We measured the bonding area by using the infrared camera and the bonding strength by the razor blade clack opening method, respective1y. It was confirmed that the bonding area was between 80% and to 95% as FLA heat input increased. The bonding strength became the equal of $1000^{\circ}C$ heat treated $Si ll SiO_2/Si_3N_4 ll Si$ pair by an electric furnace. Bonding strength increased to 2500 mJ/$\textrm{m}^2$as heat input increased, which is identical value of annealing at $1000^{\circ}C$-2 hr with an electric furnace. Our results implies that we obtained the enough bonding strength using the FLA, in less process time of 125 seconds and at lowed annealing temperature of $400^{\circ}C$, comparing with the conventional electric furnace annealing.

Development of Prediction Model for Sugar Content of Strawberry Using NIR Spectroscopy (근적외선 분광을 이용한 딸기의 당도예측모델 개발)

  • Son, Jaeryong;Lee, Kangjin;Kang, Sukwon;Yang, Gilmo;Seo, Youngwook
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.297-301
    • /
    • 2009
  • This study was performed to develop a prediction model of sugar content for strawberry. Near-infrared (NIR) spectroscopy has been prevailed for on-line and portable applications for non-invasive quality assessment of intact fruit. This work presents effects of illumination method and coating of reflection surface of light source on prediction result of sugar content. Effect of preprocessing methods was also examined. A low-cost commercially available VIS/NIR spectrometer was used for estimation of total soluble solids content (Brix). To predict sugar contents of strawberry, the best results were obtained with the spectrum data measured under intensive illuminations at three locations induced from the light source with fiber optic bundles. Gold coating of reflection surface of light source lamp gave favorable effect to prediction result. The best results in validation of PLSR model were $r_{SEP}$ = 0.891 and SEP = 0.443 Brix under OSC preprocessing and those of PCR were $r_{SEP}$ = 0.845, SEP $r_{SEP}$= 0.520 Brix, under no preprocessing.

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Growth and Physiological Characteristics of Pinus densiflora Seedlings in Response to Open-field Experimental Warming using the Infrared Lamp (적외선등을 이용한 실외 실험적 온난화 처리가 소나무 묘목의 생장과 생리적 특성에 미치는 영향)

  • Lee, Sun Jeoung;Han, Saerom;Yoon, Tae Kyung;Han, Seung Hyun;Jung, Yejee;Yun, Soon Jin;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.522-529
    • /
    • 2013
  • Climate change will affect the physiological traits and growth of forest trees. This study was conducted to investigate the effects of an experimental warming on growth and physiological characteristics of Pinus densiflora S. et Z. seedlings. One-year-old P. densiflora seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ using infrared lamps from November 2010. We measured shoot height, root collar diameter, above and below ground biomass, chlorophyll contents and leaf nitrogen concentration from March 2011 to March 2013. Seedling height and root collar diameter showed no significant difference between warmed and control plots except for root collar diameter measured in June 2012. Seedling leaf biomass was lower in the warmed ($23.94{\pm}2.10g$) than in the control ($26.08{\pm}1.72g$) plots in 2013. Shoot to root ratio (S/R ratio) was lower in the warmed ($1.09{\pm}0.07$) than in the control ($1.31{\pm}0.10$) plots in 2013. Leaf nitrogen concentrations and chlorophyll contents were not significantly different between warmed and control plots except for leaf nitrogen concentration in 2011. Leaf C/N ratio was increased in 2012 under the warming treatment. Low growth and S/R ratio in warmed plots might be related to the higher temperature and water stress. In the future, the below-ground carbon allocation of P. densiflora might be increased by global warming due to temperature and water stress.

Effects of Experimental Warming on Growth of Quercus variabilis Seedlings (실외 실험적 온난화 처리가 굴참나무 묘목의 생장에 미치는 영향)

  • Lee, Sun Jeoung;Han, Saerom;Yoon, Tae Kyung;Chung, Haegeun;Noh, Nam Jin;Jo, Wooyong;Park, Chan-Woo;Ko, Suin;Han, Seung Hyun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.722-728
    • /
    • 2012
  • Climate change affects all biological processes in terrestrial ecosystems including photosynthesis, plant growth and productivity. This study was conducted to investigate the effects of experimental warming on the growth of Quercus variabilis seedlings. One-year-old Q. variabilis seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ compared to control plots using the infrared lamp from November 2010. Shoot height and root collar diameter were measured in March 2011 and June 2012, respectively, and aboveground and belowground biomass were also measured in March 2011 and 2012, respectively. Shoot height and root collar diameter were significantly higher in warmed plots than in control plots, except for root collar diameter in March 2011. Increment (mm) of shoot height and root collar diameter were also higher in warmed plots ($529{\pm}30$, $5.6{\pm}0.5$) than in control plots ($464{\pm}28$, $4.5{\pm}0.4$). However, there were no significant differences between warmed and control plots except for root collar diameter. Increment (g/year) of total, aboveground and belowground biomass were higher in warmed plots ($36.88{\pm}6.52$, $11.91{\pm}3.44$, $24.97{\pm}3.73$) than in control plots ($30.59{\pm}5.51$, $8.73{\pm}1.66$, $21.86{\pm}3.88$), however, the differences were not statistically significant. Higher seedling growth and biomass of warmed plots might be related to the enhanced net photosynthetic rates in spring and the extended growing season.