Development of Prediction Model for Sugar Content of Strawberry Using NIR Spectroscopy

근적외선 분광을 이용한 딸기의 당도예측모델 개발

  • Son, Jaeryong (National Academy of Agricultural Science, RDA) ;
  • Lee, Kangjin (National Academy of Agricultural Science, RDA) ;
  • Kang, Sukwon (National Academy of Agricultural Science, RDA) ;
  • Yang, Gilmo (National Academy of Agricultural Science, RDA) ;
  • Seo, Youngwook (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
  • 손재룡 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 이강진 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 강석원 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 양길모 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 서영욱 (서울대학교 바이오시스템.소재학부)
  • Received : 2009.05.04
  • Accepted : 2009.11.21
  • Published : 2009.11.30

Abstract

This study was performed to develop a prediction model of sugar content for strawberry. Near-infrared (NIR) spectroscopy has been prevailed for on-line and portable applications for non-invasive quality assessment of intact fruit. This work presents effects of illumination method and coating of reflection surface of light source on prediction result of sugar content. Effect of preprocessing methods was also examined. A low-cost commercially available VIS/NIR spectrometer was used for estimation of total soluble solids content (Brix). To predict sugar contents of strawberry, the best results were obtained with the spectrum data measured under intensive illuminations at three locations induced from the light source with fiber optic bundles. Gold coating of reflection surface of light source lamp gave favorable effect to prediction result. The best results in validation of PLSR model were $r_{SEP}$ = 0.891 and SEP = 0.443 Brix under OSC preprocessing and those of PCR were $r_{SEP}$ = 0.845, SEP $r_{SEP}$= 0.520 Brix, under no preprocessing.

본 연구에서는 딸기의 당도예측모델을 개발하기 위하여 수행하였으며, 딸기의 당도판정에 보다 적합한 조명장치를 설계하기 위해 조명의 영향을 구명하고, 딸기의 당도예측 모델을 개발하였으며, 주요연구 결과는 다음과 같다. 조명방법에 따른 당도 예측 성능을 비교한 결과 4개의 램프로 시료를 직접 조명하는 경우 $r_{SEP}$= 0.603, SEP = 0.502$^{\circ}$Bx으로 나타났으며, 광 화이버로 빛을 유인하여 국부적으로 시료에 점 조명한 경우(광 화이버 3개 사용)에는 $r_{SEP}$= 0.715, SEP = 0.433$^{\circ}$Bx으로서 후자가 더 좋은 성능을 나타내었다. 또한 램프 반사면의 금 코팅 유무에 따른 당도판정 성능시험을 실시한 결과 금 코팅된 할로겐램프를 사용한 경우 $r_{SEP}$= 0.837, SEP = 0.510$^{\circ}$Bx으로서 그렇지 않은 경우의 $r_{SEP}$= 0.756, SEP = 0.580$^{\circ}$Bx보다 양호한 결과가 나타나 금 코팅에 대한 당도판정 효과가 있는 것으로 나타났다. 딸기 당도판정을 위한 최적 회귀모델을 개발하기 위하여 PLSR과 PCR을 이용하였다. 전처리를 하지 않은 경우 $r_{SEP}$= 0.860, SEP=0.498$^{\circ}$Bx로 양호한 결과가 나타났으나, 가장 좋은 결과는 상기에서 언급된 최적의 조명상태에서 측정된 스펙트럼 데이터에 OSC 전처리를 한 경우 $r_{SEP}$= 0.891, SEP = 0.443$^{\circ}$Bx, LV=14로 가장 양호한 결과를 나타내었다. 한편, PCR을 이용한 당도 예측은 전처리를 하지 않은 경우 $r_{SEP}$= 0.845, SEP = 0.520$^{\circ}$Bx, LV=17으로서 DT 전처리에서의 $r_{SEP}$= 0.845, SEP = 0.521$^{\circ}$Bx, LV=17보다 오히려 높게 나타나 전처리에 따른 효과는 없는 것으로 나타났다.

Keywords

References

  1. Ama T, Ueda E, Matsue H, Hiniki H. 1990. Determination of brixin intact apple by NIRS. Abstract of the 6th non-destructivemeasurement symposium, pp. 98-102
  2. Birth GS. 1978. Non destructive quality evaluation of agriculturalproducts-introduction. J. Food Prot. 41: 48-49
  3. Golic M, Walsh KB. 2006. Robustness of calibration modelsbased on near infrared spectroscopy for the in-line grading ofstonefruit for total soluble solids content. Analytica ChimicaActa 555: 286-291 https://doi.org/10.1016/j.aca.2005.09.014
  4. Kawano S, Watanabe H, Iwamoto M. 1992. Determination ofsugar content in intact peaches by near infrared spectroscopywith fiber optics in interactance mode. J. Japanese Soc. HorticulturalSci. 61: 45-451
  5. Kawano S, Fujiwara T, Iwamoto M. 1993. Nondestructive determinationof sugar content in satsma mandarin using near infrared(NIR) transmittance. J. Japanese Soc. Horticultural Sci.62:465-470 https://doi.org/10.2503/jjshs.62.465
  6. Kawano S. 1994. Non-destructive NIR quality evaluation of fruitsand vegetables in Japan. NIR news 5: 10-12
  7. Kim G, Lee K, Son J, Choi D, Kang S. 2004. Defect and ripenessinspection of citrus using NIR transmission spectrum. Key EngineeringMaterials 270-273: 1018-1013
  8. Lammertyn J, Nicolai B, Ooms K, De Smedt V, De BaerdemaerkerJ. 1998. Non-destructive measurment of acidity, solublesolids, and firmness of Jonagold apples using NIR spectroscopy.T. ASAE 41: 1089-1094
  9. Lammertyn J, Peirs A, Baerdemaeker JD, Nicolai B. 2000. Lightpenetration properties of NIR radiation in fruit with respect tonon-destructive quality assessment. Postharvest Biol. Technol.18: 121-132 https://doi.org/10.1016/S0925-5214(99)00071-X
  10. Lee KJ, Hruschka WR, Abbott JA, Noh SH, Park BS. 1998.Predicting the soluble solids of apples by near infrared spectroscopy(I) -multiple linear regression models. J. Korean Soc. Agr.Mach. 23: 561-570
  11. Son JR, Lee KJ, Kang S, Kim G, Yang GM, Mo CY, Seo Y.2009. Development of prediction models for nondestructivemeasurement of sugar content in sweet persimmon. J. BiosystemsEng. 34: 197-203 https://doi.org/10.5307/JBE.2009.34.3.197
  12. Zude-Sasse M, Truppel I, Herold B. 2002. An approach to nondestructiveapple chlorophyll determination. Postharvest Biol.Technol. 25: 123-133 https://doi.org/10.1016/S0925-5214(01)00173-9