• Title/Summary/Keyword: Infrared heating

Search Result 256, Processing Time 0.027 seconds

Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process (적외선 램프를 이용하여 소결한 구리 나노잉크의 전기적 특성 평가에 관한 연구)

  • Han, Hyun-Suk;Kim, Changkyu;Yang, Seung-Jin;Kim, Yoon-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2016
  • A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature ($300^{\circ}C$) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.

Beating Channel Layout Design and Evaluation Technology for SMC Molds (Sheet Molding Compound 금형의 가열채널설계 및 평가기술)

  • Heo Y. M.;Ko Y. B.;Lee J. H.;Lee S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.263-268
    • /
    • 2005
  • Heating channel layout design and evaluation technology for SMC molding system was investigated in this work. Traditional rules of cooling channel design in injection molding were applied to the present work. Finite element thermal analysis with $ANSYS^{TM}$ was performed to evaluate the temperature distribution of SHC mold surface. SMC mold was manufactured to evaluate the effect of a proposed heating channel layout system on the temperature distribution of SMC mold surface and infrared camera was applied to a measurement of temperature distribution. It was shown that infrared camera application was possible in a measurement of temperature distribution on SHC mold surface.

Effects of Heat Therapy Using a Far Infrared Rays Heating Element for Dysmenorrhea in High School Girls (원적외선 방사체를 이용한 온열요법이 여고생의 월경곤란증에 미치는 효과)

  • Hong, Yeon-Ran
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.1
    • /
    • pp.142-149
    • /
    • 2011
  • Purpose: The purpose of this study was designed to identify the effects of heat therapy on dysmenorrhea, heat being provided using a far infrared rays heating element. Methods: The research design for the study was a non-equivalent control group quasi- experimental design. Participants were 22 students for the experimental group, and 26 students for the control group. Data were analyzed using SAS WIN 9.1 program. Results: The experimental group had significantly lower mean scores for menstrual pain, dysmenorrhea, and blood pressure than those in the control group. However, no significant differences were found between two groups for pulse, respiration, and temperature. Conclusion: These findings show that thermotherapy was effective for reduction of menstrual pain, dysmenorrhea, and B/P. Therefore, this therapy could be used as a nursing intervention for students with dysmenorrhea.

Analysis of Heating Effect of an Infrared Heating System in a Small Venlo-type Glasshouse (소형 벤로형 유리온실에서 적외선등 난방 시스템의 난방효과 분석)

  • Lim, Mi Young;Ko, Chung Ho;Lee, Sang Bok;Kim, Hyo Kyeong;Bae, Yong Han;Kim, Young Bok;Yoon, Yong Cheol;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • An infrared heating system, installed in a small venlo-type glasshouse ($280m^2$) in Gyeongsang National University, Jinju, Korea, was used to investigate its heating effect with potted Phalaenopsis, Schefflera arboricola 'Hongkong', Ficus elastica 'Variegata', and Rosa hybrida 'Yellow King' as the test plants. Temperature changes in test plants with the system turned 'On' and 'Off' were measured by using an infrared camera and the consumption of electricity by this infrared heating system was measured and analyzed. In potted Phalaenopsis, when the set air temperature of the greenhouse was $18^{\circ}C$, temperature of leaves and the growing medium were $22.8{\sim}27^{\circ}C$ and $21.3{\sim}24.3^{\circ}C$, respectively. In such tall plants as Schefflera arboricola 'Hongkong' and Ficus elastica 'Variegata', the upper part showed the highest temperature of 24.0 and $26.9^{\circ}C$, respectively. From the results of temperature change measurements, the plant temperatures were near or above the set point temperatures with some fluctuations depending on the position or distance from the infrared heating system. When air temperature between night and dawn dropped sharply, plant temperatures were maintained close to the set temperature ($18^{\circ}C$). There was a significant difference between 'On' and 'Off' states of the infrared heating system in average temperatures of root zone and leaf: 21.8 and $17.8^{\circ}C$ with the system 'On' and 20.4 and $15.5^{\circ}C$ with the system 'Off', respectively, in a cut rose Rosa hybrida 'Yellow King'. The heating load was about $24,850{\sim}35,830kcal{\cdot}h^{-1}$, which comes to about 27,000~40,000 won in Korean currency when calculated in terms of the cost of heating by a hot water heating system heated by petroleum. The cost for heating by the infrared heating system was about 35% of that of a hot water heating system. With the infrared heating system, the air temperature during the night was maintained slightly lower than the set point air temperature, probably due to the lack of air tightness of the glasshouse. Therefore, glasshouses with an infrared heating system requires further investigation including the installation space of the heat-emitting units, temperature sensor positions, and convection.

Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites

  • Yong, Seok-Min;Choi, Doo Hyun;Lee, Kisu;Ko, Seok-Young;Cheong, Dong-Ik
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.59-62
    • /
    • 2019
  • Y2O3-MgO nanocomposites are promising materials for hypersonic infrared windows and domes due to their excellent midIR transmittance and mechanical properties. In this work, influence of SPS heating rate on the microstructure, IR transmittance, and mechanical properties of Y2O3-MgO nanocomposites was investigated. It was found that the average grain size decreases with a decreasing heating rate, which can be attributed to high defect concentration by rapid heating and deformation during densification. Also, the residual porosity decreases with a decreasing heating rate, which is ascribed to the enhancement of grain boundary diffusion by a large grain-boundary area (a small grain size). Consequently, high transmittance and hardness were attained by the low heating rate. On the other hand, the mechanical strength showed little difference with the heating rate change, which is somewhat different from the general knowledge on ceramics and will be discussed in this letter.

A STUDY OF LYNDS 1251 DARK CLOUD: II. INFRARED PROPERTIES

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.107-117
    • /
    • 1996
  • We have studied the star forming activities and dust properties of Lynds 1251, a dark cloud located at relatively high galactic latitude. Eleven IRAS point sources identified toward Lynds 1251 are discussed. Estimate of stellar masses, and far-infrared lumnosities of the young stars associated with two prominent IRAS point sources imply that these are T-Tauri stars with masses smaller than $0.3 M_\bigodot$. The low dust temperature of 27 K and low ratio of FIR emission to hydrogen column density are probably due to the lack of internal heating sources. Presumably two low mass young stars do not have enough energy to heat up the dust and gas associated. The dust heating is dominated by the interstellar heating source, and the weaker interstellar radiation field can explain the exceptionally low dust temperatures found in Lynds 1251. The estimated dust mass of Lynds 1251 is just $\~1M_\bigodot$, or about 1/1000 of gas mass, which implies that there must be a substantial amount of colder dust. The infrared flux at $100{\mu}m$ is matching well with $^{13}CO$ peak temperature, while the $^{12}CO$ integrated intensity is matching with the boundary of dust emission. Overall, the dust properties of Lynds 1251 is similar to those of normal dark clouds even though it does have star forming activities.

  • PDF

The Effect of Temperature on Springback of AZ31, Ti-GR2 during V-bending with Focused Heating using Near-infrared Radiation (근적외선 집광가열 시 온도조건이 AZ31, Ti-GR2 소재 굽힘성형의 스프링백에 미치는 영향에 대한 실험적 연구)

  • Lee, E.H.;Hwang, J.S.;Lee, C.W.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.469-474
    • /
    • 2014
  • With the increased concerns of environmental issues, industries are paying more attention to lightweight metals. Because the high degree of springback is an obstacle to the widespread use of lightweight metals, many investigations have been conducted to reduce springback by increasing temperature. However, increasing the temperature of the whole die or the material is energy inefficient, since generally only a limited area of the material is deformed during sheet metal forming. As a solution to this problem, focused heating that only heats the area where plastic deformation occurs may be an alternative approach. In the current study, V-bending tests were conducted at various temperatures after the AZ31, Ti-GR2 sheets were locally heated using near-infrared (NIR) radiation in order to evaluate the effect of temperature on springback. The results of the experiment confirm that the NIR focused heating reduces the springback of AZ31, Ti-GR2 alloys with increasing temperature.

Evaluation of Thermal Properties for the Far Infrared Therapy After Microvascular Anastomosis for the Treatment of Circulatory Diseases (미세혈관 문합 후 순환계 질환 개선을 위한 원적외선 치료기의 열적 특성 평가)

  • Yang, Young-Kyu;Oh, Seung-Hyun;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Far-infrared radiation therapies are becoming more popular for blood circulation disorders, cardiovascular disease, skin diseases, inhibit cancer cell, etc replacing conventional operations. In this research, thermal characteristics of heating part in panel radiators, which is effective on the blood circulation disorders were experimentally analyzed. The heating line supplies heat energy to insulation coatings with heat flux of $150mW/m^2$ in normal status and as a result the coatings reached 20% of the heating line temperature. In other words, the insulation itself could increase surface temperature of heating plates by 20% and raise thermal time constant promote blood circulation effect. We also found that space arrangement of the heating lines was an important factor in designing heating parts and both coefficient of heat conduction and density of the heating plate should be also considered for superimpose of thermal diffusion.

Evaluation of Defects in the Bonded Area of Shoes using an Infrared Thermal Vision Camera

  • Kim, Jae-Yeol;Yang, Dong-Jo;Kim, Chang-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.511-514
    • /
    • 2003
  • The Infrared Camera usually detects only Infrared waves emitted from the light in order to illustrate the temperature distribution. An Infrared diagnosis system can be applied to various fields. But the defect discrimination can be automatic or mechanized in the special shoes total inspection system. This study introduces a method for special shoes nondestructive total inspection. Performance of the proposed method is shown through thermo-Image.

The Effect of Far-Infrared Irradiation on Functional Components of Grape Seed (원적외선 처리가 포도씨의 기능성분에 미치는 영향)

  • Lee, Jihyun;Baek, Jiyoung;Yoon, Sung-Ran;Kwon, Joong-Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.28
    • /
    • pp.53-62
    • /
    • 2010
  • The effect of far-infrared (FIR) irradiation on the functional compounds of grape seeds extract were evaluated. Grape seed was dried on different heating power (0, 900, 1800 W) and heating time (0, 20, 40 min) with far-infrared drier. Contents of soluble solids, catechins, total phenolics and total flavonoids along with Hunter's color value, electron donating ability (EDA) and nitrite scavenging activity were analyzed. The soluble solids, Hunter's L value and a value were not significantly different from control samples. Cathechin, procyanidin $B_2$ and epicatechin contents changed with heating time. In the treated sample, total cathechins content was found maximum at 900 W of heating power and 20 min of heating time with a high level of total phenolics, total flavonids and EDA. These results indicated that FIR irradiation of grape seed could enhance antioxidant activities of its extracts by increasing the amounts of functional compounds. Moreover, response surface methodology(RSM) was applied to predict optimum conditions for heating by FIR rays of grape seeds. Based on superimposition of contour map with respect to total phenolics, total catechin and EDA, optimum ranges of heating conditions were heating power of 621.82~818.18 W and heating time of 16.3~19.83 min.

  • PDF