• Title/Summary/Keyword: Infrared: imaging

Search Result 763, Processing Time 0.029 seconds

PRELIMINARY OPTICAL DESIGN OF MIRIS, MAIN PAYLOAD OF STSAT-3 (과학기술위성3호 주탑재체 MIRIS의 광학계 시험설계)

  • Yuk, I.S.;Jin, H.;Lee, S.;Park, Y.S.;Lee, D.H.;Nam, U.W.;Park, J.H.;Han, W.Y.;Lee, J.W.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than $40{\mu}m$ over the whole detector plane.

Design of an Infrared Multi-touch Screen Controller using Stereo Vision (스테레오 비전을 이용한 저전력 적외선 멀티 터치스크린 컨트롤러의 설계)

  • Jung, Sung-Wan;Kwon, Oh-Jun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.68-76
    • /
    • 2010
  • Touch-enabled technology is increasingly being accepted as a main communication interface between human and computers. However, conventional touchscreen technologies, such as resistive overlay, capacitive overlay, and SAW(Surface Acoustic Wave), are not cost-effective for large screens. As an alternative to the conventional methods, we introduce a newly emerging method, an optical imaging touchscreen which is much simpler and more cost-effective. Despite its attractive benefits, optical imaging touchscreen has to overcome some problems, such as heavy computational complexity, intermittent ghost points, and over-sensitivity, to be commercially used. Therefore, we designed a hardware controller for signal processing and multi-coordinate computation, and proposed Infrared-blocked DA(Dark Area) manipulation as a solution. While the entire optical touch control took 34ms with a 32-bit microprocessor, the designed hardware controller can manage 2 valid coordinates at 200fps and also reduce energy consumption of infrared diodes from 1.8Wh to 0.0072Wh.

Derivation of Surface Temperature from KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model

  • Kim, Yongseung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.343-353
    • /
    • 2022
  • An attempt to derive the surface temperature from the Korea Multi-purpose Satellite (KOMPSAT)-3A mid-wave infrared (MWIR) data acquired over the southern California on Nov. 14, 2015 has been made using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. Since after the successful launch on March 25, 2015, the KOMPSAT-3A spacecraft and its two payload instruments - the high-resolution multispectral optical sensor and the scanner infrared imaging system (SIIS) - continue to operate properly. SIIS uses the MWIR spectral band of 3.3-5.2 ㎛ for data acquisition. As input data for the realistic simulation of the KOMPSAT-3A SIIS imaging conditions in the MODTRAN model, we used the National Centers for Environmental Prediction (NCEP) atmospheric profiles, the KOMPSAT-3Asensor response function, the solar and line-of-sight geometry, and the University of Wisconsin emissivity database. The land cover type of the study area includes water,sand, and agricultural (vegetated) land located in the southern California. Results of surface temperature showed the reasonable geographical pattern over water, sand, and agricultural land. It is however worthwhile to note that the surface temperature pattern does not resemble the top-of-atmosphere (TOA) radiance counterpart. This is because MWIR TOA radiances consist of both shortwave (0.2-5 ㎛) and longwave (5-50 ㎛) components and the surface temperature depends solely upon the surface emitted radiance of longwave components. We found in our case that the shortwave surface reflection primarily causes the difference of geographical pattern between surface temperature and TOA radiance. Validation of the surface temperature for this study is practically difficult to perform due to the lack of ground truth data. We therefore made simple comparisons with two datasets over Salton Sea: National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) field data and Salton Sea data. The current estimate differs with these datasets by 2.2 K and 1.4 K, respectively, though it seems not possible to quantify factors causing such differences.

Modis Maximum NDVI, Minimum Blue, and Average Cloud-free Monthly Composites of Southeast Asia

  • Zerbe, L.;Chia, A.S.;Liew, S.C.;Kwoh, L.K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.172-174
    • /
    • 2003
  • Using MODIS data and several different compositing algorithms utilizing the average cloud free days in a compositing period, maximum ndvi, or dual maximum NDVI/minimum blue, multi resolution composites (250m, 500m, 1km) have been produced for Southeast Asia, with spectral bands ranging from the visible to short-wave infrared with a single band in the thermal (for land and sea surface temperature). A total of nine composites have been produced for the months of May and August in 2003, including blue, green, red, NIR, three in the SWIR, and several to specifically monitor vegetation health.

  • PDF

NIR Fluorescence Imaging Systems with Optical Packaging Technology

  • Yang, Andrew Wootae;Cho, Sang Uk;Jeong, Myung Yung;Choi, Hak Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.25-31
    • /
    • 2014
  • Bioimaging has advanced the field of nanomedicine, drug delivery, and tissue engineering by directly visualizing the dynamic mechanism of diagnostic agents or therapeutic drugs in the body. In particular, wide-field, planar, near-infrared (NIR) fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for target tissues to be resected and vital tissues to be preserved. In this review, we introduce the principles of NIR fluorescence imaging and analyze currently available NIR fluorescence imaging systems with special focus on optical source and packaging. We also introduce the evolution of the FLARE intraoperative imaging technology as an example for image-guided surgery.

ULTRA PRECISION MACHINING FOR ASTRONOMICAL INFRARED OPTICS (천체관측용 적외선 광학계 초정밀 가공)

  • Kim, Geon-Hee;Jin, Ho;Yang, Sun-Chol;Kim, Myung-Sang;Kook, Myung-Ho;Lee, Sung-Ho;Yuk, In-Soo
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.3
    • /
    • pp.55-61
    • /
    • 2007
  • The KASINICS (Korea Astronomy and Space science Institute Near Infrared Camera System) is a ground-based near-infrared (NIR) imaging instrument. KASINICS has offner relay optics to reduce unwanted infrared light. For the offner optics, we adopted an ultra precision machining process which is installed at KBSI (Korea Basics Science research Institute). Since the offner relay optics is made of aluminum 6061 metal material, we did several tests to reach the specification. We found that a 0.497mm radius nose bite and 220m/min machining speed are best tool and condition to make this offner optics with the precision machine. In this paper, we report the technical method of ultra precision machining and results of the KASINICS offner optics.

3 Cases of Patients with Vascular Claudication, Focussed on the Diagnostic Advantages of Infrared Thermography (혈관성 파행 환자에 대한 적외선 체열 촬영의 진단학적 고찰 3례 보고)

  • Shin, Hwa-Young;Kim, Jae-Soo;Lim, Seong-Chul;Lee, Yun-Kyu;Lee, Hyun-Jong;Kwon, Hyo-Jung;Lee, Bong-Hyo;Jung, Tae-Young;Choi, Woo-Suk
    • Korean Journal of Oriental Medicine
    • /
    • v.18 no.1
    • /
    • pp.53-57
    • /
    • 2012
  • Objectives : The purpose of this study was to check diagnostic performance of infrared thermography for patients with vascular claudication. Methods : 3 patients with vascular claudication were diagnosed with Digital Infrared Thermal Imaging(DITI) and compared the relative temperature difference between the right and left. Results : Symptomatic legs showed significant low body temperature and at the very site patients complained of pain on, the body temperature differed distinctly between the right and left. Conclusions : Infrared thermographic diagnosis with clinical symptoms may be helpful in diagnosing suspected vascular claudication.

PROTO-MODEL OF AN INFRARED WIDE-FIELD OFF-AXIS TELESCOPE

  • Kim, Sang-Hyuk;Pak, Soo-Jong;Chang, Seung-Hyuk;Kim, Geon-Hee;Yang, Sun-Choel;Kim, Myung-Sang;Lee, Sung-Ho;Lee, Han-Shin
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.169-181
    • /
    • 2010
  • We develop a proto-model of an off-axis reflective telescope for infrared wide-field observations based on the design of Schwarzschild-Chang type telescope. With only two mirrors, this design achieves an entrance pupil diameter of 50 mm and an effective focal length of 100 mm. We can apply this design to a mid-infrared telescope with a field of view of $8^{\circ}{\times}8^{\circ}$. In spite of the substantial advantages of off-axis telescopes in the infrared compared to refractive or on-axis reflective telescopes, it is known to be difficult to align the mirrors in off-axis systems because of their asymmetric structures. Off-axis mirrors of our telescope are manufactured at the Korea Basic Science Institute (KBSI). We analyze the fabricated mirror surfaces by fitting polynomial functions to the measured data. We accomplish alignment of this two-mirror off-axis system using a ray tracing method. A simple imaging test is performed to compare a pinhole image with a simulated prediction.

INTERNATIONAL COOPERATION OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 국제 공동 연구)

  • Lee, D.H.;Nam, U.W.;Lee, S.;Jin, H.;Yuk, I.S.;Kim, K.H.;Pak, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.

Design of infrared image storage board for outdoor testing (야외시험용 적외선 영상 저장보드 설계)

  • Kim, Hong-Rak;Park, Jin-Ho;Kim, Kyoung-Il;Lee, Da-Been
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.161-166
    • /
    • 2021
  • When testing various images outdoors with an infrared imaging system, it is necessary to save the tested images for comparison. In addition, after the test, it should be possible to easily connect to the PC and download the stored data. With the recent development of the memory system, it is possible to design an infrared image storage board for an outdoor test by using the eMMC memory that can be easily used in the form of an on board. In this paper, we describe the design of a portable image storage board that can easily store and download infrared images, and describe the GUI program that can connect to a PC and download the stored images.