• Title/Summary/Keyword: Information platform

Search Result 5,824, Processing Time 0.035 seconds

A Study on the Competitive Factor of Global Logistics Hub Cities Using a Importance-Performance Analysis : Focusing on the Case of Incheon Metropolitan City (IPA분석을 통한 글로벌 물류 허브도시 경쟁요인에 관한 연구 : 인천광역시 사례를 중심으로)

  • Lee, Myeong-Hwa;Shin, Mi-Na;Kim, Un-Soo
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.205-219
    • /
    • 2024
  • This study assesses Incheon Metropolitan City's potential as a global logistics hub amid intensified competition since the 2000s. Utilizing Importance-Performance Analysis(IPA), it evaluates competitive factors for logistics hub cities and Incheon's current positioning. The research identifies world-class infrastructure development and global city connectivity as key competitiveness factors. While Incheon, with its international airport and port, currently functions as a logistics hub, areas for improvement emerge. Recommendations include developing specialized cargo infrastructure for cold-chain and e-commerce, expanding the global network through multimodal transportation, and addressing gaps in smart and eco-friendly logistics. These suggestions encompass professional training, information platform establishment, and sector-wide decarbonization initiatives. The study's significance lies in its IPA-driven evaluation of competitiveness factors and Incheon's status, providing actionable recommendations for strategic planning to enhance the city's position as a global logistics hub.

A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine (Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구)

  • Jang, Wonjin;Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.615-626
    • /
    • 2024
  • To accurately and efficiently monitor soil moisture (SM) across South Korea, this study developed a SM estimation model that integrates the cloud computing platform Google Earth Engine (GEE) and Automated Machine Learning (AutoML). Various spatial information was utilized based on Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and the global precipitation observation satellite GPM (Global Precipitation Measurement) to test optimal input data combinations. The results indicated that GPM-based accumulated dry-days, 5-day antecedent average precipitation, NDVI (Normalized Difference Vegetation Index), the sum of LST (Land Surface Temperature) acquired during nighttime and daytime, soil properties (sand and clay content, bulk density), terrain data (elevation and slope), and seasonal classification had high feature importance. After setting the objective function (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE) using AutoML for the combination of the aforementioned data, a comparative evaluation of machine learning techniques was conducted. The results revealed that tree-based models exhibited high performance, with Random Forest demonstrating the best performance (R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).

Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education (지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.449-457
    • /
    • 2024
  • AIoT, the intelligent Internet of Things, refers to a technology that collects data measured by IoT devices and applies machine learning technology to create and utilize predictive models. Existing research on AIoT technology education focused on building an educational AIoT platform and teaching how to use it. However, there was a lack of case studies that taught the process of automatically creating and utilizing machine learning models from data measured by IoT devices. In this paper, we developed a case study using a machine learning model for AIoT technology education. The case developed in this paper consists of the following steps: data collection from AIoT devices, data preprocessing, automatic creation of machine learning models, calculation of accuracy for each model, determination of valid models, and data prediction using the valid models. In this paper, we considered that sensors in AIoT devices measure different ranges of values, and presented an example of data preprocessing accordingly. In addition, we developed a case where AIoT devices automatically determine what information they can predict by automatically generating several machine learning models and determining effective models with high accuracy among these models. By applying the developed cases, a variety of educational contents using AIoT, such as prediction-based object control using AIoT, can be developed.

The association between the type of menstrual sanitary products used and menstrual discomfort: A PSM analysis (사용 생리대 유형과 월경불편감의 관련성: PSM 분석)

  • Hyunju Dan;Heeja Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.389-396
    • /
    • 2024
  • This is a descriptive study to investigate the association between types of menstrual sanitary products used and menstrual discomfort. The participants included 1,484 women who used either disposable sanitary pads or tampons, out of a total of 1,571 women aged 19-40 years and data collection was conducted from September 2020 to August 2021. The survey was conducted through an online and mobile survey platform, with participants proceeding to take part after clicking the 'agree' button. Data analysis involved 1:4 propensity score matching, descriptive statistics, chi-square tests, t-tests, and hierarchical regression analysis. The results indicated that among the participants, 94.1% used disposable sanitary pads, while 5.9% used tampons. In the final model, significant influencing factors identified were age 30 or older (β=-.157, p=.043), standing for 1-4 hours at work (β=-.131, p=.040), experiencing sleep disorders (β=.337, p<.001), and tampon use (β=.130, p=.005). Therefore, it is essential for nurses to incorporate information about various menstrual sanitary products' characteristics into their menstrual education for women of reproductive age.

Analysis of Food Tech Startups: A Case Study Utilizing the ERIS Model (푸드테크 스타트업 현황 분석 및 ERIS 모델 기반 성공 사례연구)

  • Sunhee Seo;Yeeun Park;Jae yeong Choi
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.4
    • /
    • pp.161-182
    • /
    • 2024
  • The study analyzed the rapidly growing food tech startup in South Korea, focusing on industry classification, core technological domains, investment stages, and growth trajectories. Utilizing the ERIS model, two innovative food tech startups, MyChef and CatchTable, were examined as case studies. Results revealed food tech startups are focusing on information technology and smart distribution technology-oriented solutions rather than traditional food production. This study also found that robotics and AI integration were key technology areas. Analyzing the emergence of food tech startups, investment stages, and cumulative investment amounts based on founding years revealed a trend of scaling operations through rounds of funding, especially after securing SERIES A and B funding. The period between 2014 and 2018 saw a dense concentration of food tech startup establishments, likely influenced by favorable conditions for technological innovation amid the Fourth Industrial Revolution. The high rate of strategic mergers and acquisitions and bankruptcy can be interpreted as the complexity inherent in the food tech industry. The case study of MyChef, which grew into HMR manufacturing, and Wad(CatchTable), which expanded into a restaurant reservation platform, derived the entrepreneurs, resources, industry, and strategic factors that served as success factors for food tech startups. This study has practical implications in that it provides entrepreneurs, investors, and policymakers in the food tech industry with insight and direction to develop strategies in line with market trends and technological changes and promote sustainable growth.

  • PDF

The Effect of Corporate SNS Marketing on User Behavior: Focusing on Facebook Fan Page Analytics (기업의 SNS 마케팅 활동이 이용자 행동에 미치는 영향: 페이스북 팬페이지 애널리틱스를 중심으로)

  • Jeon, Hyeong-Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.75-95
    • /
    • 2020
  • With the growth of social networks, various forms of SNS have emerged. Based on various motivations for use such as interactivity, information exchange, and entertainment, SNS users are also on the fast-growing trend. Facebook is the main SNS channel, and companies have started using Facebook pages as a public relations channel. To this end, in the early stages of operation, companies began to secure a number of fans, and as a result, the number of corporate Facebook fans has recently increased to as many as millions. from a corporate perspective, Facebook is attracting attention because it makes it easier for you to meet the customers you want. Facebook provides an efficient advertising platform based on the numerous data it has. Advertising targeting can be conducted using their demographic characteristics, behavior, or contact information. It is optimized for advertisements that can expose information to a desired target, so that results can be obtained more effectively. it rethink and communicate corporate brand image to customers through contents. The study was conducted through Facebook advertising data, and could be of great help to business people working in the online advertising industry. For this reason, the independent variables used in the research were selected based on the characteristics of the content that the actual business is concerned with. Recently, the company's Facebook page operation goal is to go beyond securing the number of fan pages, branding to promote its brand, and further aiming to communicate with major customers. the main figures for this assessment are Facebook's 'OK', 'Attachment', 'Share', and 'Number of Click' which are the dependent variables of this study. in order to measure the outcome of the target, the consumer's response is set as a key measurable key performance indicator (KPI), and a strategy is set and executed to achieve this. Here, KPI uses Facebook's ad numbers 'reach', 'exposure', 'like', 'share', 'comment', 'clicks', and 'CPC' depending on the situation. in order to achieve the corresponding figures, the consideration of content production must be prior, and in this study, the independent variables were organized by dividing into three considerations for content production into three. The effects of content material, content structure, and message styles on Facebook's user behavior were analyzed using regression analysis. Content materials are related to the content's difficulty, company relevance, and daily involvement. According to existing research, it was very important how the content would attract users' interest. Content could be divided into informative content and interesting content. Informational content is content related to the brand, and information exchange with users is important. Interesting content is defined as posts that are not related to brands related to interesting movies or anecdotes. Based on this, this study started with the assumption that the difficulty, company relevance, and daily involvement have an effect on the dependent variable. In addition, previous studies have found that content types affect Facebook user activity. I think it depends on the combination of photos and text used in the content. Based on this study, the actual photos were used and the hashtag and independent variables were also examined. Finally, we focused on the advertising message. In the previous studies, the effect of advertising messages on users was different depending on whether they were narrative or non-narrative, and furthermore, the influence on message intimacy was different. In this study, we conducted research on the behavior that Facebook users' behavior would be different depending on the language and formality. For dependent variables, 'OK' and 'Full Click Count' are set by every user's action on the content. In this study, we defined each independent variable in the existing study literature and analyzed the effect on the dependent variable, and found that 'good' factors such as 'self association', 'actual use', and 'hidden' are important. Could. Material difficulties', 'actual participation' and 'large scale * difficulties'. In addition, variables such as 'Self Connect', 'Actual Engagement' and 'Sexual Sexual Attention' have been shown to have a significant impact on 'Full Click'. It is expected that through research results, it is possible to contribute to the operation and production strategy of company Facebook operators and content creators by presenting a content strategy optimized for the purpose of the content. In this study, we defined each independent variable in the existing research literature and analyzed its effect on the dependent variable, and we could see that factors on 'good' were significant such as 'self-association', 'reality use', 'concernal material difficulty', 'real-life involvement' and 'massive*difficulty'. In addition, variables such as 'self-connection', 'real-life involvement' and 'formative*attention' were shown to have significant effects for 'full-click'. Through the research results, it is expected that by presenting an optimized content strategy for content purposes, it can contribute to the operation and production strategy of corporate Facebook operators and content producers.

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

A Study on the establishment of IoT management process in terms of business according to Paradigm Shift (패러다임 전환에 의한 기업 측면의 IoT 경영 프로세스 구축방안 연구)

  • Jeong, Min-Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2015
  • This study examined the concepts of the Internet of Things(IoT), the major issue and IoT trend in the domestic and international market. also reviewed the advent of IoT era which caused a 'Paradigm Shift'. This study proposed a solution for the appropriate corresponding strategy in terms of Enterprise. Global competition began in the IoT market. So, Businesses to be competitive and responsive, the government's efforts, as well as the efforts of companies themselves is needed. In particular, in order to cope with the dynamic environment appropriately, faster and more efficient strategy is required. In other words, proposed a management strategy that can respond the IoT competitive era on tipping point through the vision of paradigm shift. We forecasted and proposed the emergence of paradigm shift through a comparative analysis of past management paradigm and IoT management paradigm as follow; I) Knowledge & learning oriented management, II) Technology & innovation oriented management, III) Demand driven management, IV) Global collaboration management. The Knowledge & learning oriented management paradigm is expected to be a new management paradigm due to the development of IT technology development and information processing technology. In addition to the rapid development such as IT infrastructure and processing of data, storage, knowledge sharing and learning has become more important. Currently Hardware-oriented management paradigm will be changed to the software-oriented paradigm. In particular, the software and platform market is a key component of the IoT ecosystem, has been estimated to be led by Technology & innovation oriented management. In 2011, Gartner announced the concept of "Demand-Driven Value Networks(DDVN)", DDVN emphasizes value of the whole of the network. Therefore, Demand driven management paradigm is creating demand for advanced process, not the process corresponding to the demand simply. Global collaboration management paradigm create the value creation through the fusion between technology, between countries, between industries. In particular, cooperation between enterprises that has financial resources and brand power and venture companies with creative ideas and technical will generate positive synergies. Through this, The large enterprises and small companies that can be win-win environment would be built. Cope with the a paradigm shift and to establish a management strategy of Enterprise process, this study utilized the 'RTE cyclone model' which proposed by Gartner. RTE concept consists of three stages, Lead, Operate, Manage. The Lead stage is utilizing capital to strengthen the business competitiveness. This stages has the goal of linking to external stimuli strategy development, also Execute the business strategy of the company for capital and investment activities and environmental changes. Manege stage is to respond appropriately to threats and internalize the goals of the enterprise. Operate stage proceeds to action for increasing the efficiency of the services across the enterprise, also achieve the integration and simplification of the process, with real-time data capture. RTE(Real Time Enterprise) concept has the value for practical use with the management strategy. Appropriately applied in this study, we propose a 'IoT-RTE Cyclone model' which emphasizes the agility of the enterprise. In addition, based on the real-time monitoring, analysis, act through IT and IoT technology. 'IoT-RTE Cyclone model' that could integrate the business processes of the enterprise each sector and support the overall service. therefore the model be used as an effective response strategy for Enterprise. In particular, IoT-RTE Cyclone Model is to respond to external events, waste elements are removed according to the process is repeated. Therefore, it is possible to model the operation of the process more efficient and agile. This IoT-RTE Cyclone Model can be used as an effective response strategy of the enterprise in terms of IoT era of rapidly changing because it supports the overall service of the enterprise. When this model leverages a collaborative system among enterprises it expects breakthrough cost savings through competitiveness, global lead time, minimizing duplication.

Performance of Uncompressed Audio Distribution System over Ethernet with a L1/L2 Hybrid Switching Scheme (L1/L2 혼합형 중계 방법을 적용한 이더넷 기반 비압축 오디오 분배 시스템의 성능 분석)

  • Nam, Wie-Jung;Yoon, Chong-Ho;Park, Pu-Sik;Jo, Nam-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.108-116
    • /
    • 2009
  • In this paper, we propose a Ethernet based audio distribution system with a new L1/L2 hybrid switching scheme, and evaluate its performance. The proposed scheme not only offers guaranteed low latency and jitter characteristics that are essentially required for the distribution of high-quality uncompressed audio traffic, and but also provide an efficient transmission of data traffic on the Ethernet environment. The audio distribution system with a proposed scheme consists of a master node and a number of relay nodes, and all nodes are mutually connected as a daisy-chain topology through up and downlinks. The master node generates an audio frame for each cycle of 125us, and the audio frame has 24 time slotted audio channels for carrying stereo 24 channels of 16-bit PCM sampled audio. On receiving the audio frame from its upstream node via the downlink, each intermediate node inserts its audio traffic to the reserved time slot for itself, then relays again to next node through its physical layer(L1) transmission - repeating. After reaching the end node, the audio frame is loopbacked through the uplink. On repeating through the uplink, each node makes a copy of audio slot that node has to receive, then play the audio. When the audio transmission is completed, each node works as a normal L2 switch, thus data frames are switched during the remaining period. For supporting this L1/L2 hybrid switching capability, we insert a glue logic for parsing and multiplexing audio and data frames at MII(Media Independent Interlace) between the physical and data link layers. The proposed scheme can provide a good delay performance and transmission efficiency than legacy Ethernet based audio distribution systems. For verifying the feasibility of the proposed L1/L2 hybrid switching scheme, we use OMNeT++ as a simulation tool with various parameters. From the simulation results, one can find that the proposed scheme can provides outstanding characteristics in terms of both jitter characteristic for audio traffic and transmission efficiency of data traffics.

The Current Status of Utilization of Palliative Care Units in Korea: 6 Month Results of 2009 Korean Terminal Cancer Patient Information System (말기암환자 정보시스템을 이용한 우리나라 암환자 완화의료기관의 이용현황)

  • Shin, Dong-Wook;Choi, Jin-Young;Nam, Byung-Ho;Seo, Won-Seok;Kim, Hyo-Young;Hwang, Eun-Joo;Kang, Jina;Kim, So-Hee;Kim, Yang-Hyuck;Park, Eun-Cheol
    • Journal of Hospice and Palliative Care
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2010
  • Purpose: Recently, health policy making is increasingly based on evidence. Therefore, Korean Terminal Cancer Patient Information System (KTCPIS) was developed to meet such need. We aimed to report its developmental process and statistics from 6 months data. Methods: Items for KTCPIS were developed through the consultation with practitioners. E-Velos web-based clinical trial management system was used as a technical platform. Data were collected for patients who were registered to 34 inpatient palliative care services, designated by Ministry of Health, Welfare, and Family Affairs, from $1^{st}$ of January to $30^{th}$ of June in 2009. Descriptive statistics were used for the analysis. Results: From the nationally representative set of 2,940 patients, we obtained the following results. Mean age was $64.8{\pm}12.9$ years, and 56.6% were male. Lung cancer (18.0%) was most common diagnosis. Only 50.3% of patients received the confirmation of terminal diagnosis by two or more physicians, and 69.7% had an insight of terminal diagnosis at the time of admission. About half of patients were admitted to the units on their own without any formal referral. Average and worst pain scores were significantly reduced after 1 week when compared to those at the time of admission. 73.4% faced death in the units, and home-discharge comprised only 13.3%. Mean length of stay per admission was $20.2{\pm}21.2$ days, with median value of 13. Conclusion: Nationally representative data on the characteristics of patients and their caregiver, and current practice of service delivery in palliative care units were obtained through the operation of KTCPIS.