• Title/Summary/Keyword: Information entropy

Search Result 883, Processing Time 0.038 seconds

A New $H_2$ Bound for $H_{\infty}$ Entropy

  • Zhang, Hui;Sun, Youxian
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.620-625
    • /
    • 2008
  • The $H_{\infty}$ entropy in $H_{\infty}$ control theory is discussed based on investigating information transmission in continuous-time linear stochastic systems. It is proved that the stabilizing feedback does not change the time-average information transmission between system input and output, and the $H_{\infty}$ entropies of open- and closed-loop stable transfer functions are bounded by mutual information rate between input and output in the open-loop system. Furthermore, a new $H_2$ upper bound for $H_{\infty}$ entropy is introduced with a numerical example. Thus the $H_{\infty}$ entropy of a stable transfer function is sandwiched between $H_2$ norms of the original system and a static feedback system.

Computing Semantic Similarity between ECG-Information Concepts Based on an Entropy-Weighted Concept Lattice

  • Wang, Kai;Yang, Shu
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.184-200
    • /
    • 2020
  • Similarity searching is a basic issue in information processing because of the large size of formal contexts and their complicated derivation operators. Recently, some researchers have focused on knowledge reduction methods by using granular computing. In this process, suitable information granules are vital to characterizing the quantities of attributes and objects. To address this problem, a novel approach to obtain an entropy-weighted concept lattice with inclusion degree and similarity distance (ECLisd) has been proposed. The approach aims to compute the combined weights by merging the inclusion degree and entropy degree between two concepts. In addition, another method is utilized to measure the hierarchical distance by considering the different degrees of importance of each attribute. Finally, the rationality of the ECLisd is validated via a comparative analysis.

How eWOM Reduces Uncertainties in Decision-making Process: Using the Concept of Entropy in Information Theory (정보이론의 엔트로피 관점에서의 바라본 온라인 소비자 리뷰의 소비자 의사결정에 있어 불확실성 감소 효과)

  • Lee, Jung
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.4
    • /
    • pp.241-256
    • /
    • 2011
  • The present study examines the impact of eWOM on consumer decision making process by viewing eWOM as the product information supplier. We employ the concept of information entropy which was proposed in the information theory to explain different consumer responses to various types of product information in eWOM. Information entropy is the degree of uncertainty associated with the information in the message. In eWOM, a variety of information with different levels of entropy is available, and these different entropy levels result in different impacts on consumer behavior. The preliminary hypotheses are formulated to examine the impact of eWOM on consumer behavior, at the product attribute level and the purchase action level separately. An experiment was conducted to online shopping mall users and the analysis gives valuable insights into our future research.

Application of Information-theoretic Measure (Entropy) to Safety Assessment in Manufacturing Processes

  • Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2005
  • Design of manufacturing process, in general, facilitates the creation of new process that may potentially harm the workers. Design of safety-guaranteed manufacturing process is, therefore, very important since it determines the ultimate outcomes of manufacturing activities involving safety of workers. This study discusses application of information-theoretic measure (entropy) to safety assessment of manufacturing processes. The idea is based on the general principles of design and their applications. Some examples are given.

A Randomness Test by the Entropy (Entropy에 의한 Randomness 검정법)

  • 최봉대;신양우;이경현
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1991.11a
    • /
    • pp.105-133
    • /
    • 1991
  • 본 논문에서는 임의의 이진 난수발생기의 source가 $BMS_{p}$ 이거나 M-memory를 갖는 마르코프연쇄로 모델화 되었을 경우에 비트당 entropy와 관련이 있는 새로운 randomness에 관한 통계적 검정법을 제안한다. 기존에 알려진 이진 난수발생기의 randomness검정법이 0또는 1의 분포의 편향성(bias)이나 연속된 비트간의 상관성(correlation)중의 한 종류만의 non-randomness를 추적해낼 수 있는 반면에 새로운 검정법은 위의 두가지 검정을 통과하였을 때 암호학적으로 중요한 측도인 비트당 entropy 를 측정하여 암호학적인 약점을 검정할 수 있다. 또한 대칭(비밀키) 암호시스템의 통계적 결점을 바탕으로 하여 키를 찾는 공격자의 최적 전략( optimal strategy)문제를 분석하여 이 최적 전략이 이진 수열의 비트당 entropy와 밀접한 관계가 있음을 보이고 이 비트당 entropy와 관련이 있는 새로운 통계량을 도입하여 이진 난수 발생기의 source의 이진수열이 다음 3가지 경우, 즉, i.i.d. symmetric인 경우, $BMS_{p}$ 인 경우, M-memory를 갖는 마르코프연쇄인 경우의 각각에 대하여 특성을 조사하고 새로운 통계량의 평균과 분산을 구한다. 이때 구한 새로운 통계량은 잘 알려진 중심 극한 정리에 의하여 근사적으로 정규분포를 따르므로 위의 평균과 분산을 이용하여 스트림 암호시스템에서 구성요소로 많이 사용되는 몇 몇 간단한 이진 난수 발생기에 적용하여 통계적 검정을 실시함으로써 entropy 관점의 검정법이 새로운 randomness 검정법으로 타당함을 보인다.

  • PDF

An Improved Cross Entropy-Based Frequency-Domain Spectrum Sensing (Cross Entropy 기반의 주파수 영역에서 스펙트럼 센싱 성능 개선)

  • Ahmed, Tasmia;Gu, Junrong;Jang, Sung-Jeen;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.50-59
    • /
    • 2011
  • In this paper, we present a spectrum sensing method by exploiting the relationship of previous and current detected data sets in frequency domain. Most of the traditional spectrum sensing methods only consider the current detected data sets of Primary User (PU). Previous state of PU is a kind of conditional probability that strengthens the reliability of the detector. By considering the relationship of the previous and current spectrum sensing, cross entropy-based spectrum sensing is proposed to detect PU signal more effectively, which has a strengthened performance and is robust. When previous detected signal is noise, the discriminating ability of cross entropy-based spectrum sensing is no better than conventional entropy-based spectrum sensing. To address this problem, we propose an improved cross entropy-based frequency-domain spectrum sensing. Regarding the spectrum sensing scheme, we have derived that the proposed method is superior to the cross entropy-based spectrum sensing. We proceed a comparison of the proposed method with the up-to-date entropy-based spectrum sensing in frequency-domain. The simulation results demonstrate the performance improvement of the proposed spectrum sensing method.

Information Management by Data Quantification with FuzzyEntropy and Similarity Measure

  • Siang, Chua Hong;Lee, Sanghyuk
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.35-41
    • /
    • 2013
  • Data management with fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem. Calculation of certainty or uncertainty for data, fuzzy entropy and similarity measure are designed and proved. Proposed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and the relation between two measures are explained through graphical illustration.Obtained measures are useful to the application of decision theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to the decision making and fuzzy game theory.

Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.20-33
    • /
    • 2015
  • Spectrum sensing is a key component of cognitive radio. The prediction of the primary user status in a low signal-to-noise ratio is an important factor in spectrum sensing. However, because of noise uncertainty, secondary users have difficulty distinguishing between the primary signal and an unauthorized signal when an unauthorized user exists in a cognitive radio network. To resolve the sensitivity to the noise uncertainty problem, we propose an entropy-based spectrum sensing scheme to detect the primary signal accurately in the presence of an unauthorized signal. The proposed spectrum sensing uses the conditional entropy between the primary signal and the unauthorized signal. The ability to detect the primary signal is thus robust against noise uncertainty, which leads to superior sensing performance in a low signal-to-noise ratio. Simulation results show that the proposed spectrum sensing scheme outperforms the conventional entropy-based spectrum sensing schemes in terms of the primary user detection probability.

Goodness-of-fit Tests for the Weibull Distribution Based on the Sample Entropy

  • Kang, Suk-Bok;Lee, Hwa-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.259-268
    • /
    • 2006
  • For Type-II censored sample, we propose three modified entropy estimators based on the Vasieck's estimator, van Es' estimator, and Correa's estimator. We also propose the goodness-of-fit tests of the Weibull distribution based on the modified entropy estimators. We simulate the mean squared errors (MSE) of the proposed entropy estimators and the powers of the proposed tests. We also compare the proposed tests with the modified Kolmogorov-Smirnov and Cramer-von-Mises tests which were proposed by Kang et al. (2003).

  • PDF

Ensemble Model Based Intelligent Butterfly Image Identification Using Color Intensity Entropy (컬러 영상 색채 강도 엔트로피를 이용한 앙상블 모델 기반의 지능형 나비 영상 인식)

  • Kim, Tae-Hee;Kang, Seung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.972-980
    • /
    • 2022
  • The butterfly species recognition technology based on machine learning using images has the effect of reducing a lot of time and cost of those involved in the related field to understand the diversity, number, and habitat distribution of butterfly species. In order to improve the accuracy and time efficiency of butterfly species classification, various features used as the inputs of machine learning models have been studied. Among them, branch length similarity(BLS) entropy or color intensity entropy methods using the concept of entropy showed higher accuracy and shorter learning time than other features such as Fourier transform or wavelet. This paper proposes a feature extraction algorithm using RGB color intensity entropy for butterfly color images. In addition, we develop butterfly recognition systems that combines the proposed feature extraction method with representative ensemble models and evaluate their performance.