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Abstract   Data management with fuzzy entropy and similarity measure were discussed and verified by 
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information analysis problem. Extension of data quantification results based on the proposed measures are 

applicable to the decision making and fuzzy game theory.
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1. Introduction
Data quantification is the one of interesting research 

theme, in which data vagueness is represented by the 

real value. Studies on quantifying the degree of 

uncertainty has been debated between fuzzy set theory 

and probability [1], however coexistence seemed 

obvious due to two approaches are complementary 

rather than competitive. With the obtained research 

result can give the advantage for dealing with system 

management including reliable data selection, pattern 

recognition or even fuzzy game theoretic problem. 

Design of fuzzy entropy for calculation of uncertainty 

has been studied by numerous researchers [2-4]. Most 

of results were concentrated in the designing of fuzzy 

entropies [2,3], and some parts of them also showed the 

implicit results of fuzzy entropies [2]. Hence, to apply 

real data explicit fuzzy entropy has to be needed. In our 

previous results, fuzzy entropies based on the distance 

measure has been reported[5,6]. With those designed 

fuzzy entropies reliable data selection problem has been 

solved [7]. Counter meaning of fuzzy entropy with 

respect to fixed data has been considered as the 

similarity measure and in our previous results [5]. 

Relation between fuzzy entropy and similarity measure 

has also studied [7]. In result [5], counter meaning of 

similarity measure was defined by dissimilarity 

measure, in which dissimilarity measure was derived 

through similarity and vice versa. Those relations give 

us the result that two measures can be obtained 

through counter measure designing. Obtained similarity 

measures were also designed with the distance 

measure, especially well-known Hamming distance 

measure. Hence, these data analysis make possible to 

manage the system optimization or design the efficient 

system management. Fuzzy entropy and similarity 

measure are introduced to describe the uncertainty and 

certainty of data, hence data analysis or quantification 

to the decision theory and fuzzy game theory has been 

followed. In next chapter, fuzzy entropy and similarity 

results are introduced and discussed. With application 
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example data quantification results from fuzzy entropy 

and similarity are verified. Applications to decision 

theory and fuzzy game theory are shown in Chapter 3. 

Finally, conclusions are followed in Chapter 4.

2. Fuzzy Entropy and Similarity Measure
Liu’s definition of fuzzy entropy is illustrated in the 

Definition 2.1, which illustrates the four properties of 

fuzzy entropy definition [2].

Definition 2.1 For ( )A F X∀ ∈  and ( )D P X∀ ∈ , 

fuzzy entropy has following four properties

(E1) ( ) 0, ( )e D D P X= ∀ ∈

(E2) ( )([1/ 2] ) ( )X A F Xe max e A∈=

(E3) 
*( ) ( )e A e A≤ , for any sharpening *A  of A

(E4) ( ) ( ), ( )Ce A e A A F X= ∀ ∈

where [1/ 2]X  is the fuzzy set in which the value 

of the membership function is 1/ 2 . ( )F X  is fuzzy 

set and ( )P X  is ordinary set. Next, similarity 

measure between two sets is defined in Definition 2.2 

[2]. On the contrary the properties of Definition 2.1 

similarity measure shows that the degree of closeness 

between two sets containing fuzzy sets or ordinary 

sets.

Definition 2.2 For , ( )A B F X∀ ∈ and ( )D P X∀ ∈ , 

similarity measure has following four properties

(S1) ( , ) ( , )s A B s B A= , , ( )A B F X∀ ∈

(S2) ( , ) 0cs D D = , ( )D P X∀ ∈  

(S3) ,( , ) max ( , )A B Fs C C s A B∈= , ( )C F X∀ ∈

(S4) , , ( )A B C F X∀ ∈ , if A B C⊂ ⊂ , then 

( , ) ( , )s A B s A C≥  and ( , ) ( , )s B C s A C≥ ,

( )F X  and ( )P X  denote fuzzy set and ordinary 

set, respectively. 

2.1 Illustrations of Fuzzy Entropy and 

Similarity measure

Entropy of fuzzy data set with respect to the 

ordinary set can be designed using distance measure. 

Our previous results are followed as follows [5,6]:

( , )neare A A = ( ,[1] )near Xd A A∩ ( ,[0] ) 1near Xd A A+ ∪ −

( , )neare A A = 1 ( ,[0] )near Xd A A− ∩ ( ,[1] )near Xd A A− ∪

A B∩ and A B∪ are expressed the minimum and 

maximum value, expressions are commonly used in 

fuzzy set theory. The distance is defined by 

( )d A B∩
1

1 | ( ) ( ) |
n

A i B i
i

x x
n

μ μ
=

= −∑
. nearA  

represents the crisp set "near" to the fuzzy set A . 

nearA  can be utilized by various variable as 

0 1near≤ ≤ . For example, the value of crisp set 0.5A  

has one when ( )A xμ ≥ 0.5, and is zero otherwise. 

Above fuzzy entropies are represent the degree of 

uncertainty between fuzzy set and corresponding 

deterministic ordinary set nearA . 

Next, similarity measures between two data sets are 

also followed [5,6]. 

( , )s A B = ( ,[0] )Xd A B∩ + ( ,[1] )Xd A B∪

( , ) 2 ( ,[1] ) ( ,[0] )X Xs A B d A B d A B= − ∩ − ∪

Equations of fuzzy entropy and similarity can be 

also explained by graphical point of view. Fuzzy 

entropy means the degree of uncertainty or the 

dissimilarity between two data sets, fuzzy set and 

corresponding ordinary set generally. Hence, it can be 

designed through many ways satisfying Definition 2.1. 

Similarity measure represents the degree of similarity 
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between all kinds of data sets. Fuzzy entropy and 

similarity can be explained by graphical illustration in 

Fig. 1. Shaded area representsthe common information 

of two fuzzy sets with membership functions. Hence, 

regions C and Dsatisfy the definition of similarity 

measure. Except region of C and D satisfy the 

dissimilarity between two data sets. 

The relation between similarity measure and 

dissimilarity measure can be derived as follows

( , ) ( , ) 1D A B s A B+ = (1)

By the comparison with (1) and Fig. 1 it is clear that 

( , )s A B  is represented by graphical summation of C 

and D. 

[Fig. 1] Gaussian type two membership functions

In which the total information of two fuzzy set 

membership functions are represented by the 

summation of results similarity and dissimilarity 

measure. 

 

2.2 Fuzzy Entropy and Similarity Measure 

Application

Calculation of uncertainty and certainty for datacan 

be applied to the various fields such as data 

classification, pattern recognition. Next examples show 

the reliable data selection problem. Reliable data 

selection problem can be solved using fuzzy entropy 

and similarity measure [7]. In Fig. 2, Gaussian 

distribution is considered as the fuzzy membership 

function, and the chosen 5 student scores are also 

shown in. 5 students’ scores are chosen randomly. In 

Fig. 2(a), 5 students have 50, 52, 55, 57, and 59 points. 

Whereas, 12, 46, 53, 55, and 91 points are illustrated in 

Fig. 2(b).Two figures seemed clear to identify which 

one represents middle level or average level students 

by heuristic approach. However two data sets show 

unclear by calculation of fuzzy entropy even more 

numerical calculation of each average.    
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[Fig. 2] Membership functions of 5 students

Consider fuzzy entropy as follows:

( , ) 2 ( , ) 2 ( , )near near near neare A A d A A A d A A A= ∩ + ∩ (2)

The average level student’s points are between 37 

and 71, i.e.  0.5
( ) 1A xμ =  when 37 71x≤ ≤ , 

0.5
( ) 0A xμ =  otherwise. In the view of fuzzy entropy 

computation, both cases are calculated for the problem 

of how much they are in the average level. 

Computation results say that 

0.5 0.5 0.5 0.5( , ) 2 ( , ) 2 ( , )e A A d A A A d A A A= ∩ + ∩

          

2
(| 1 0.983 | | 1 0.999 |

5
| 1 0.987 | | 1 0.957 | | 1 0.91 |)

= − + −

+ − + − + −

          0.0656= .
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In the above, 0.5( , )d A A A∩ has to be deleted 

because of distance between same points. Similarly, 

Fig. 2(b) shows that 

0.5 0.5 0.5 0.5( , ) 2 ( , ) 2 ( , )e A A d A A A d A A A= ∩ + ∩

           

2 | 0.019 0 | | 0.031 0 |)
5

= − + −

          

2 |1 0.899 | |1 1 | |1 0.987 |)
5

+ − + − + −

           0.0656= .

Hence, the fuzzy entropy results indicate that two 

trials have same degree of uncertainty. Furthermore, 

they show good certainty because of small entropy 

value. However, their data points are not proper to 

represent middle level. The reason for the same fuzzy 

entropy values of two trials is originated from the 

property of complementary. This drawback was 

overcome through similarity measure [7].

[Table 2] Sample, fuzzy entropy, and similarity measure

Data Information

Sample Fuzzy 
entropy

Similarity 
measure

Fig. 2(a) 50, 52, 55, 57, 59 0.0656 0.9832

Fig.2(b) 12, 46, 53, 55, 91 0.0656 0.5872

With the results, similarities are calculated with 

designed similarity measure by 0.9832 and 0.5872, 

respectively. The first trial has the higher similarity 

value than Fig. 2(b), hence it can be determined that 

the result is the nearest average level 5 students with 

only similarity measure. From this decision, with only 

similarity measure provides which trial is the most 

reliable data selection for this problem. To obtain same 

result fuzzy entropy calculation is needed more 

statisticalinformation. Whereas compared to those 

results of fuzzy entropy, similarity measure has explicit 

advantage for reliable data selecting.   

 

3. Applications of Fuzzy Entropy and 
Similarity Measure to Management 
Problems

With fuzzy entropy and similarity measure, 

accessibility to the decision theory, system modeling or 

system management are introduced.

3.1 Decision Theory

For decision making, building partial consequence 

and objective compatibility have been designed through 

fuzzy set theory [11]. In order to design necessity and 

possibility of decision it is necessary to formulate 

objective and consequence as fuzzy membership 

function.

Compatibility level is composed with necessity and 

possibility as following formulation:

, (1 ) ( , ) ( , )i j j ij j ijk Nα μ π α μ π= − Π + , (4)

where ( , )j ijμ πΠ  and ( , )j ijN μ π  are denoted as 

possibility and necessity of decision. Furthermore, jμ  

and ijπ  are objective and consequence for considering 

fact, respectively. Considering fuzzy membership 

functions jμ  and ijπ  areneeded to be small entropy, 

because low entropy value guarantee more certain to 

the fact. Furthermore possibility is greater than the 

necessity if the similarity between objective and 

consequence membership functions become greater. In 

example of [11], the fuzzy objective ( )j xμ  

corresponds to

450( ) ,
75j

xxμ −
=

 if 375 450,x≤ ≤

( ) 1,j xμ =  if  0 375,x≤ ≤

( ) 0,j xμ =  if 450.x ≥
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Consequence functions satisfies 

375( ) ,
25ij

xxπ −
=

 if 375 400,x≤ ≤

425( ) ,
25ij

xxπ −
=

 if  400 425,x≤ ≤

( ) 0,ij xπ =  if 375x ≤  and 425x ≥ . 

Similarity measure between jμ and ijπ has the 

following structure.

( , )j ijs μ π = ( ,[0] )j ij Xd μ π∩ + ( ,[1] )j ij Xd μ π∪ (5)

It is clear that similarity measure value is 

proportional to the ( , )j ijμ πΠ  and ( , )j ijN μ π by the 

graphical presentation of pairs jμ and ijπ . Therefore 

similarity modification is also applicable to the decision 

theory.

3.2 Characteristics of Relative Information 

Measure

Definition of relative information has not been 

formulated by researchers. In [12], they just proposed 

fuzzy relative information measure [ , ]R A B as the 

fuzzy relative information measure of B  to A . Hence, 

definition of fuzzy relative information measure will be 

presented through analyzing the definition of 

[ , ]R A B .

Proposition 3.1 Fuzzy relative information 

measure [ , ]R A B satisfies following properties:

(i) [ , ] 0R A B =  if and only if there is no 

intersection between A and B , or ,A B are 

ordinary sets.

(ii) [ , ] [ , ]R A B R B A=  if and only if 

( ) ( )H A H B= .

(iii) [ , ]R A B  takes maximum value and 

[ , ] [ , ]R A B R B A≥  if and only if A is 

contained in B , i.e, ( ) ( )A Bx xμ μ≤  for 

x X∀ ∈ .

(iv) If A B C⊂ ⊂ , then ( , ) ( , )R B A R C A≥  and 

( , ) ( , ) ( , )R A B R A C R B C= = .

Liu insisted that entropy can be calculated from the 

similarity measure and dissimilarity measure, which is 

denoted by 1s d+ = [2]. With this concept relative 

information measure can be designed via similarity 

measure. By the definition of entropy for certain fact, 

( )H A B∩ and ( )H A satisfy (( ), ( ) )nearH A B A B∩ ∩ and 

( , )nearH A A , respectively. Where, ( )nearA B∩  

satisfies the same definition of nearA . Roughly, it can 

be satisfied that 

1 (( ), ( )
[ , ]

1 ( , )
)near

near

s A B A B
R A B

s A A
− ∩ ∩

=
− (6)

Where, 

(( ), ( ) )
1 (( ), ( ) )

near

near

s A B A B
H A B A B
∩ ∩

= − ∩ ∩  and

( , ) 1 ( , )near nears A A H A A= − .

This measure also satisfies Proposition 3.1. Next, 

another relative information measure satisfying 

Proposition 3.1 without virtual ordinary sets 

( )nearA B∩  and nearA  is considered. 

3.3 Fuzzy Coaliation in Game Theory 

Coalition vectors [0,1]Nα ∈  are chosen inbetween 

zero and one, where N  is a set of players. Each fuzzy 

coalition is identified with a point in the hypercube 

[0,1]Nα ∈ , while an ordinary coalition is regarded as 

a vertex of this hypercube, a point in [0,1]Nα ∈ . 

Hence, optimal choice of fuzzy coalition vector to 

minimized payoff function is needed. Whereas 
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opponents also try to make minimized other side payoff 

function [13].

min ( , , )u i jU x s u min ( , )u i jU x s=

min ( , , )d i jV x s d min ( , )d i jV x s=

Where, i N∈ and j M∈ are number of players 

and strategies, respectively. Furthermore, 

( , )u f x s= and ( , )d g x s= are inputs to minimize 

payoff functions. In order to determine input variable 

player participation degree is determined by adjusting 

coalition vector. Problem can be transformed to 

determine is to determine iα , which constitutes 

,

1, 1

N M

i i j
i j

u x sα
= =

= ∑
, and it minimize ( , )i jU x s . Here, 

( )i i ix x aα = are considered as the fuzzy set with 

membership values. Also strategies are considered as 

the ordinary set elements. Then, it is possible to 

calculate the similarity measure between xμ and fixed 

values. It was also verified that the calculation of 

similarity measure between fuzzy set and single datum 

[9]. Hence, similarity measure is applicable to 

determine the coalition vector of fuzzy game theory. 

4. Conclusions
Data groups havecorrelation between the degree of 

similarity and dissimilarity. These relations are 

expressed by fuzzy entropy and similarity measure. 

First, fuzzy entropy and similarity are introduced, and 

discussed their meaning and application. Two measures 

are applied to the reliable data selection problem. Fuzzy 

set analysis can be also applied to decision theory or 

system management problem, especially in fuzzy game 

theory. For decision making considered objective and 

consequence are needed. Decision tools, necessity and 

possibility, are proportional to the similarity measure 

between objective and consequence membership 

function. Hence, the conventional decision procedure, 

designing compatibility level, can be replaced with 

similarity measure.
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