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요 약

본 논문은 주파수 영역에서 과거와 현재에 센싱된 결과들의 관계를 이용한 스펙트럼 센싱기법을 제안하였다. 기존에 제안된

대부분의 스펙트럼 센싱기법은 해당 시간에 센싱된 우선사용자의 신호만을 다루고 있다. 해당 시간 이전의 우선사용자의 상태

는 조건부확률을 사용하여 검출기의 신뢰성을 증가시킬 수 있다. 따라서, 본 논문은 이전 시간과 해당 시간의 스펙트럼 센싱

결과를 사용하는 cross entropy 기반의 스펙트럼 센싱기법을 제안하며 이를 통해 우선사용자 신호 검출 성능을 향상시키고 잡

음에 강인한 성능을 가질 수 있다. 이전 시간에 검출된 신호가 잡음인 경우 cross entropy 기반의 스펙트럼 센싱 성능 감소는

기존의 entropy 기반의 센싱기법과 동일하게 된다. 이러한 문제를 해결하기 위해 본 논문에서는 보다 향상된 cross entropy 센

싱기법을 제안하였다. 본 논문은 시뮬레이션을 통해 가장 최근에 제안된 주파수 영역에서의 entropy 기반 스펙트럼 센싱기법

보다 제안된 방법이 더 나은 성능을 보이는 것을 보였다.

Abstract

In this paper, we present a spectrum sensing method by exploiting the relationship of previous and current detected

data sets in frequency domain. Most of the traditional spectrum sensing methods only consider the current detected data

sets of Primary User (PU). Previous state of PU is a kind of conditional probability that strengthens the reliability of the

detector. By considering the relationship of the previous and current spectrum sensing, cross entropy-based spectrum

sensing is proposed to detect PU signal more effectively, which has a strengthened performance and is robust. When

previous detected signal is noise, the discriminating ability of cross entropy-based spectrum sensing is no better than

conventional entropy-based spectrum sensing. To address this problem, we propose an improved cross entropy-based

frequency-domain spectrum sensing. Regarding the spectrum sensing scheme, we have derived that the proposed method

is superior to the cross entropy-based spectrum sensing. We proceed a comparison of the proposed method with the

up-to-date entropy-based spectrum sensing in frequency-domain. The simulation results demonstrate the performance

improvement of the proposed spectrum sensing method.
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Ⅰ. Introduction

In the wireless communication system, spectrum is

a very costly and limited resource which has to be

used efficiently. Many researchers have pointed out

that spectrum management is a much bigger problem

in reality than spectrum availability. Due to logistical
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issues, some frequency bands are overcrowded but so

-me others are virtually empty[1]. Cognitive radio

(CR) is a promising solution to improve the

utilization of the radio spectrum
[2～5]
. To have a brief

idea of how cognitive radio works, at first one can

consider Secondary User (SU) senses PU channel to

detect spectrum holes. Then the Secondary User

makes decision whether PU is idle. If so, it takes

action to access the PU’s channel. The spectrum

sensing function enables the cognitive radio to adapt

to its environment by detecting spectrum holes[6].

The spectrum sensing is one of the most

challenging issues in cognitive radio systems, which

will be our focus of this paper. Spectrum sensing is

classified into four mainstream methods
[7～8]
. They are

the energy detection, the matched filter, the

cyclostationary based spectrum sensing and the

entropy-based spectrum sensing. The energy

detection detects the energy level of PU signal.

Though it is simple and easy to implement, its

performance is sensitive to noise. The matched filter

requires less time to achieve high processing gain

due to coherency, but it requires a prior knowledge

of the primary user signal. If this information is not

accurate, then the matched filter cannot work. The

cyclostationary feature detector can identify the

observed signal type. However, it is computationally

complex and requires significantly long observation

time. The newly developed entropy based spectrum

sensing outperforms all the spectrum sensing

methods under certain assumptions.

All the previous spectrum sensing methods do not

consider the relationship of the previous and current

spectrum sensing of PU. However, knowledge on

previous status of PU in spectrum sensing is very

helpful for efficient spectrum sensing. Luckily the

cross entropy-based spectrum sensing measures the

relationship of the previous and current status of PU

in the spectrum sensing. Therefore, we employ cross

entropy in spectrum sensing and term it as cross

entropy-based spectrum sensing. In the cross

entropy-based spectrum sensing, the status of PU in

previous spectrum sensing is considered known to

SU (e.g. by acknowledgement packet between SUs).

Then the cross entropy value are calculated and

compared to a threshold respecting the PU state in

previous spectrum sensing.

In the cross entropy-based spectrum sensing, there

are two cases corresponding to whether PU is idle or

active in previous spectrum sensing. Consider the

case that PU is idle in previous spectrum sensing.

There are two outcomes of cross entropy value

regarding current state of PU: outcome 1) the cross

entropy value when PU is idle currently and outcome

2) the cross entropy value when PU is active

currently. The cross entropy value is the sum of

entropy value and Kullback-Leibler divergence value.

For outcome 1), the Kullback-Leibler divergence

value tends to be zero, however, it is greater than

zero in outcome 2). Moreover, as the entropy value of

PU signal is less than that of noise, the

Kullback-Leibler divergence value has shortened the

distance which is the difference of the cross entropy

values of outcome 1) and outcome 2). This has

deteriorated the spectrum sensing performance. To

address this problem, we propose an improved

spectrum sensing method for which the difference of

these outcomes is greater than that of cross

entropy-based spectrum sensing (When PU is active

in the previous spectrum sensing, the cross

entropy-based spectrum sensing works smoothly).

In this paper, we present an improved cross

entropy-based frequency-domain spectrum sensing

method to overcome degraded performance of cross

entropy based spectrum sensing. To facilitate

analysis, we adopt the framework of [9] for our

proposed spectrum sensing method (of course, the

frame work of [8] is also feasible). Firstly, we

formulate the cross entropy-based spectrum sensing

to improve the performance of [9]. Following the

performance analysis of the cross entropy-based

spectrum sensing, we have obtained our improved

cross entropy-based frequency-domain spectrum

sensing method. Furthermore, we prove that the

(273)



52 Cross Entropy 기반의 주파수 영역에서 스펙트럼 센싱 성능 개선 타사미아 외

proposed spectrum sensing method is robust against

noise uncertainty and discriminating ability is also

enhanced which leads to a superior spectrum sensing

performance.

This paper is organized as follows. In section Ⅱ,

we introduce the spectrum sensing method of [9], and

present our system model based on it. In section Ⅲ,

at first, we formulate cross entropy-based spectrum

sensing, then derivate the spectrum sensing policy

based on cross entropy-based spectrum sensing and

estimate the proposed method. The simulation results

of both Gaussian channel and Rayleigh fading

channel are shown in section Ⅳ. Finally, Section Ⅴ

concludes the paper.

Ⅱ. System Model

In this section, firstly, we introduce the spectrum

sensing method of [9] briefly. Afterwards we depict

the system model for our proposed spectrum sensing

method based on it.

1. The Spectrum Sensing Method of [9]

The authors of [9] emphasize the robustness of their

proposed method, and term it as entropy-based robust

spectrum sensing. Histogram diagram is adopted to

estimate entropy in [9] with probability space

partitioned into equal dimensions in frequency-domain.

Then, the estimated entropy of noise is proved to be a

constant while the entropy of the PU signal is not,

which is the key reason why it is robust. Therefore the

spectrum sensing performance of [9] is superior to its

time domain counterpart.

We summarize the system model of [9] as Fig.1.

To have clear sense of the robustness of [9], we

그림 1. 참고문헌 [9]의 시스템 모델

Fig. 1. System model of [9].

그림 2. 가우시안 백색잡음의 추정 엔트로피

Fig. 2. Estimated entropy of Gaussian White Noise.

re-simulate entropy distribution of noise when

estimating the entropy using different partitioning

schemes of histogram method. There are generally two

partitioning scheme. The first is fixed bin width, and

the number of bins changes with noise power. The

other is fixed bin number, and the bin width changes

with the spectrum magnitude. The authors of [9] has

shown that with probability space partitioned into fixed

dimensions, the entropy of the WGN is a constant, and

the frequency-domain entropy-based detection is thus

intrinsically robust against noise uncertainty, which is

confirmed by Fig.2

We have the following parameter settings: the

frequency is 60 kHz and the bin number is 15.

Sampling time duration is 0.001s. Each point is

obtained by averaging 10000 runs.

Fig.2 shows the estimated entropy of Gaussian

White Noise with fixed bin number and fixed bin

width. We observe that the estimated entropy is a

constant for a given bin number, whereas the entropy

is linearly proportional to noise power under a fixed bin

width. The results indicate that the entropy-based

detector can be robust against noise uncertainty by

partitioning the probability space into fixed dimension.

2. System Model of Proposed Method

Referring to [9], the structure of improved cross

entropy-based frequency-domain detector is presented

as follows:
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그림 3. 주파수 영역 검출기 기반의 개선된 상호 엔트

로피 시스템 모델

Fig. 3. System model of improved cross entropy based

frequency-domain detector.

The structure of the improved cross entropy-based

detector in the frequency-domain is shown in Fig.3.

There are two sample data sets in Fig.3: one is

current spectrum sensing data sets and another is for

previous. FFT is applied to the both data sets.

Finally, a value is calculated based on improved cross

entropy, which will be further explained in section III.

Applying discrete Fourier transform (DFT) to a

signal with frequency bandwidth Bw and central

frequency fc. The general discrete signal x(n) at the

received signal can be expressed as

             (1)

Where s(n) is the primary signal of interest, w(n)

represents background noise which follows Gaussian

distribution   , and N is the sample size. If

PU is active y(n) follows Gaussian distribution

  ,        .

We have following hypothesis in frequency-

domain.

     

               (2)

Where N is the DFT size, Y, S and W denote the

complex spectrum of the received signal, primary

signal, and noise respectively. In hypothesis  , the

received signal consists of the both primary signal

and background noise. The authors of [9] have

shown the spectrum magnitude of the received signal

follows Rice distribution in  , while with its

entropy generally different from that of Rayleigh

distribution in  .

However, the relationships of the detected data set

in previous and current spectrum sensing are not

considered in [9]. We will discuss this point in next

section.

Ⅲ. The Articulation of Improved Cross 

Entropy-Based Frequency-Domain Spectrum 

Sensing

In this section, we first present the cross

entropy-based spectrum sensing, and then proposed

the improved cross entropy-based frequency-domain

spectrum sensing based on the analysis of cross

entropy-based spectrum sensing. And finally we

provide the estimate of spectrum sensing strategy.

3.1 The Cross Entropy-Based Spectrum 

      Sensing

The cross entropy between two probability

distributions measures the average number of bits

needed to identify an event from a set of possibilities
[7]. Cross entropy is defined by (3).

   


 log   (3)

The Cross entropy-based spectrum sensing

considers the relationship of previous and current

data sets of PU by calculating cross entropy of

neighboring detected data sets. In cross

entropy-based spectrum sensing, · indicates the

probability distribution of the magnitude of sampling

outputs in previous spectrum sensing, while ·

indicates that in current spectrum sensing. Then the

cross entropy value is compared to a threshold to

decide the current PU state.

3.2 The Improved Cross Entropy-Based 

      Frequency-Domain Spectrum Sensing

From (3), we know,

   


log 



  


log   


log 



   

(4)
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Where   indicates the entropy and  

indicates the Kullback–Leibler divergence[8].

Comparing (3) and (4) and scrutinize then more

carefully, we find that, the second term   in

the last line of (4) has increased the value of (4)

comparing to entropy. As  ≥   ≥  .

Without losing of generality, consider that PU is

idle in previous spectrum sensing. To decide the

current state of PU, we take the cross entropy-based

spectrum sensing and the entropy-based spectrum

sensing respectively for comparison.

We define the spectrum sensing strategy

     temporarily and consider following

two scenarios:

(1) The current state of PU is idle.  indicates

the value of cross entropy.  indicates the value of

entropy.   indicates the value of Kullback–Leibler

divergence.

       (5)

Where,   ≈  . The current state of PU is idle.

As the detected signal of previous spectrum sensing

is noise, which abides Gaussian distribution. The

detected signal of current spectrum sensing is noise

too, which also abides Gaussian distribution.

(2) The current state of PU is active. 

indicates the value of cross entropy.  indicates

the value of entropy.   indicates the value of

Kullback–Leibler divergence.

      (6)

Where,     . The current state of PU is active.

As the detected signal of previous spectrum sensing

is noise, which abides Gaussian distribution. The

detected signal of current spectrum sensing is PU

signal polluted by noise, which abides a mixed

distribution.

Subtracting (6) from (5), we get,

            

       

    

(7)

  deteriorates the performance of cross

entropy-based spectrum sensing, even renders its

discriminating ability worse than the entropy-based

spectrum sensing.

To improve the performance of cross entropy

spectrum sensing, and in the meanwhile to utilize the

state transfer information, we redefine   in Fig.3

by (8)

         (8)

In the case that PU is active in previous spectrum

sensing, we need not modify  , just set

    . We have (9).

           

     

     

(9)

Where  indicates the value of (9) in scenario

that PU is active in previous spectrum sensing and

idle in current spectrum sensing;   and  are

corresponding to the entropy value and the Kullback

–Leibler divergence value.  indicates the value of

(9) in scenario that PU is active in both previous

spectrum sensing and current spectrum sensing; 

and  are corresponding to the entropy value and

the Kullback–Leibler divergence value.

We propose the Improved Cross Entropy-Based

Frequency-Domain Spectrum Sensing as (10).

     if     det
 if     det(10)

Most of the time, when taking current spectrum

sensing, SU already knows the exact state of PU of

previous spectrum sensing. Thus, (10) is feasible.

3.3 The Estimate of Improved Cross 

      Entropy-Based Frequency-Domain 

      Spectrum Sensing

Following the entropy estimation method, we

consider the histogram method to estimate the

probability of each state. The spectrum sensing

window deals with a set of continuous N samples
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       ≤  . Then the range of the

maximum and minimum of   is separated into L

equal intervals with boundaries     for the kth

interval.   and   , respectively central point

of the first and the last bin ,with K satisfying (11).

 and  are mean and variance of  .

        ≤   (11)

 indicates the number of  contained in the kth

interval, with å =
=

L

k k Nn
1
' . Then,   ≤  ≤  .

We can obtain the estimation:   ′ ≤  ≤ 

in a similar manner, where ′ indicates the number
of samples falling into kth interval, å =

=
L

k k Nn
1
' . The

number of states of the random variable is equal to

the bin number L. From (10), we get (12)

 













log
 i f    

 det




log  i f    
 det

(12)

Substituting value of p(k), q(k) into (12), we attain

the   estimate as (13).

 






















′


 



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(13)

Ⅳ. Simulation

In this section, we have compared the performance

of the improved cross entropy-based frequency-

domain spectrum sensing with that of robust

entropy-based frequency-domain spectrum sensing[7,

9]
. We have applied same parameters with [9]. The

Single Sideband Signal contaminated by White

Gaussian Noise is selected as candidate signal. We

provide the distribution of the improved cross

entropy-based frequency-domain spectrum sensing

with two cases (case1 when PU is idle in spectrum

sensing and case2 when PU is active in previous

spectrum sensing). We also provide the receiver

operation characteristic (ROC) in Gaussian channel

and Rayleigh fading channel.

To evaluate the performance of the improved cross

entropy-based frequency-domain spectrum sensing,

We consider, the bandwidth, Bw =12 kHz, the carrier

frequency, fc =40 kHz and the sampling frequency, fs

=100 kHz. For the simulation result, the probability

space is partitioned into equal bin number, L=15 and

the number of points in the FFT, N=128. The sample

size is 5000 and the nominal noise power is -90 dBm.

Each point in the following plots is the average of

1000 runs.

1. Gaussian Channel

(1) The Distribution of Estimated Entropy and Our 

      Proposed Method 

We have compared with improved cross entropy-

based frequency-domain spectrum sensing with

entropy-based frequency-domain spectrum sensing.

The results are shown in Fig.4 and Fig.5.

“CFE” indicates improved cross entropy-based

frequency-domain spectrum sensing, while “FE”

indicates entropy-based frequency-domain spectrum

sensing. Fig.4 describes the distribution of current

spectrum sensing values when PU is idle in previous

spectrum sensing and Fig.5 describes the distribution

그림 4. 이전 센싱에서 우선사용자가 없을 경우

Fig. 4. When PU is idle in previous spectrum sensing.
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그림 5. 이전 센싱에서 우선사용자가 있을 경우

Fig. 5. When PU is active in previous spectrum

sensing.

of current spectrum sensing values when PU is

active in previous spectrum sensing. From Fig.4 and

Fig.5, we can conclude that when PU is idle, the

detected signal is Gaussian noise which is random

and contains no information. However when PU is

active, the detected signal contains information, thus

it is no longer completely random and leads to a

decreased entropy signal.

(2) Comparison of Detection Performance

Fig.6 shows the comparison of the detection

performance between the proposed scheme in two

cases (case1 when PU is idle in previous spectrum

sensing and case2 when PU is active in previous

그림 6. ROC 곡선의 성능 비교

Fig. 6. Comparison of detection performance.

spectrum sensing) and frequency-domain entropy-

based detection. This figure shows the detection

performances in both cases of proposed scheme are

better than entropy-based frequency-domain

spectrum sensing.

(3)Comparison of Receiver Operation Characteristic

Fig.7 illustrates the ROC curves of improved cross

entropy-based frequency-domain spectrum sensing

and entropy-based frequency-domain spectrum

sensing under Gaussian channel, where SNR=-10dB.

In this figure, it is observed that the improved

spectrum sensing strategy behaves best compared to

the current ones.

그림 7. ROC 곡선의 성능 비교

Fig. 7. The comparison of ROC curves.

2. Rayleigh Fading Channel 

The primary signal is a single sideband (SSB)

signal, which is assumed to experience deep fading

that the magnitude follows Rayleigh distribution with

the delay time of each path is 0.01s and the path

numbers is 15.

(1) The Distribution of Estimated Entropy and Our 

      Proposed Method    

To illustrate the improvement of the distribution of

improved cross entropy-based frequency-domain

spectrum sensing comparing with conventional

entropy-based frequency-domain spectrum sensing,

the case of the distribution of current spectrum

(278)



2011년 3월 전자공학회 논문지 제 48 권 TC 편 제 3 호 57

그림 8. 이전 센싱에서 우선사용자가 없을 경우

Fig. 8. When PU is idle in previous spectrum sensing.

그림 9. 이전 센싱에서 우선사용자가 있을 경우

Fig. 9. When PU is active in previous spectrum

sensing.

sensing values when PU is idle in previous spectrum

sensing and the distribution of current spectrum

sensing values when PU is active in previous

spectrum sensing under Rayleigh fading channel is

simulated and shown in Fig.8 and Fig.9. From Fig.8

and Fig.9, we can conclude that the discriminating

ability has been strengthened by improved cross

entropy-based frequency-domain spectrum sensing.

(2) Comparison of Detection Performance

We have compared the detection performance of

the proposed scheme in two cases (case1 when PU is

idle in previous spectrum sensing and case2 when

PU is active in previous spectrum sensing) with the

Fig. 10. 검출 성능의 비교

Fig. 10. Comparison of detection performance.

frequency-domain entropy-based detection in

Rayleigh fading channel. Fig.10 shows the detection

performances of the proposed scheme are more

robust than conventional one.

(3) Comparison of Receiver Operation 

      Characteristic

By selecting SNR=-10, we have simulated the ROC

curves of improved cross entropy-based frequency-

domain spectrum sensing and entropy-based

frequency-domain spectrum sensing in Rayleigh

fading channel. Fig.11 shows that the detection ability

of the proposed scheme has outperformed than the

entropy-based frequency-domain spectrum sensing.

Fig. 11. ROC 곡선의 비교

Fig. 11. The comparison of ROC curves.
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Ⅴ. Conclusion

In this paper, an improved cross entropy-based

spectrum sensing has been proposed to improve the

detection performance. Cross entropy is adopted for

spectrum sensing to consider the relationship of

previous and current status data sets of PU. Based

on it, we proposed an improved cross entropy-based

spectrum sensing detects PU signal more efficiently.
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