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Abstract

In this paper, we present a spectrum sensing method by exploiting the relationship of previous and current detected
data sets in frequency domain. Most of the traditional spectrum sensing methods only consider the current detected data
sets of Primary User (PU). Previous state of PU is a kind of conditional probability that strengthens the reliability of the
detector. By considering the relationship of the previous and current spectrum sensing, cross entropy-based spectrum
sensing is proposed to detect PU signal more effectively, which has a strengthened performance and is robust. When
previous detected signal is noise, the discriminating ability of cross entropy—based spectrum sensing is no better than
conventional entropy-based spectrum sensing. To address this problem, we propose an improved cross entropy-based
frequency-domain spectrum sensing. Regarding the spectrum sensing scheme, we have derived that the proposed method
is superior to the cross entropy-based spectrum sensing. We proceed a comparison of the proposed method with the
up-to—date entropy-based spectrum sensing in frequency-domain. The simulation results demonstrate the performance
improvement of the proposed spectrum sensing method.

Keywords : Cross Entropy, Entropy, Frequency-Domain, Spectrum Sensing, Cognitive Radio.
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In the wireless communication system, spectrum is
a very costly and limited resource which has to be
used efficiently. Many researchers have pointed out
that spectrum management is a much bigger problem

in reality than spectrum availability. Due to logistical
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issues, some frequency bands are overcrowded but so
-me others are virtually emptym. Cognitive radio
(CR)

utilization of the radio Spectrum[Zﬂ. To have a brief

1S a promising solution to improve the
idea of how cognitive radio works, at first one can
consider Secondary User (SU) senses PU channel to
detect spectrum holes. Then the Secondary User
makes decision whether PU is idle. If so, it takes
action to access the PU's channel. The spectrum
sensing function enables the cognitive radio to adapt
to its environment by detecting spectrum holes',
The

challenging issues in cognitive radio systems, which

spectrum sensing is one of the most
will be our focus of this paper. Spectrum sensing is

classified into four mainstream methods” . They are

the energy detection, the matched filter, the
cyclostationary based spectrum sensing and the
entropy-based spectrum sensing. The energy

detection detects the energy level of PU signal.
Though it is simple and easy to implement, its
performance is sensitive to noise. The matched filter
requires less time to achieve high processing gain
due to coherency, but it requires a prior knowledge
of the primary user signal. If this information is not
accurate, then the matched filter cannot work. The
identify the

observed signal type. However, it is computationally

cyclostationary feature detector can

complex and requires significantly long observation
time. The newly developed entropy based spectrum
all the

methods under certain assumptions.

sensing  outperforms spectrum  sensing

All the previous spectrum sensing methods do not
consider the relationship of the previous and current
spectrum sensing of PU. However, knowledge on
previous status of PU in spectrum sensing is very
helpful for efficient spectrum sensing. Luckily the
cross entropy-based spectrum sensing measures the
relationship of the previous and current status of PU
in the spectrum sensing. Therefore, we employ cross
entropy in spectrum sensing and term it as cross
the

entropy—based spectrum sensing, the status of PU in

entropy—based spectrum sensing. In Cross
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previous spectrum sensing is considered known to
SU (e.g. by acknowledgement packet between SUs).
Then the cross entropy value are calculated and
compared to a threshold respecting the PU state in
previous spectrum sensing.

In the cross entropy-based spectrum sensing, there
are two cases corresponding to whether PU is idle or
active in previous spectrum sensing. Consider the
case that PU is idle in previous spectrum sensing.
There are two outcomes of cross entropy value
regarding current state of PU: outcome 1) the cross
entropy value when PU is idle currently and outcome
2) the cross entropy value when PU is active
currently. The cross entropy value is the sum of
entropy value and Kullback-Leibler divergence value.
For outcome 1), the Kullback-Leibler divergence
value tends to be zero, however, it is greater than
zero in outcome 2). Moreover, as the entropy value of
PU signal than that the
Kullback-Leibler divergence value has shortened the

distance which is the difference of the cross entropy

is  less of noise,

values of outcome 1) and outcome 2). This has
deteriorated the spectrum sensing performance. To
address this problem, we propose an improved
spectrum sensing method for which the difference of
these outcomes 1is greater than that of cross
entropy—based spectrum sensing (When PU is active
the the

entropy—based spectrum sensing works smoothly).

in previous spectrum sensing, Cross

In this paper, we present an improved cross
entropy—based frequency-domain sSpectrum sensing
method to overcome degraded performance of cross
To

analysis, we adopt the framework of [9] for our

entropy based spectrum sensing. facilitate
proposed spectrum sensing method (of course, the
frame work of [8] is also feasible). Firstly, we
formulate the cross entropy-based spectrum sensing
to improve the performance of [9]. Following the
performance analysis of the cross entropy-based
spectrum sensing, we have obtained our improved
entropy—based frequency—domain

Cross spectrum

sensing method. Furthermore, we prove that the
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proposed spectrum sensing method is robust against
noise uncertainty and discriminating ability is also
enhanced which leads to a superior spectrum sensing
performance.

This paper is organized as follows. In section II,
we introduce the spectrum sensing method of [9], and
present our system model based on it. In section III,
at first, we formulate cross entropy-based spectrum
sensing, then derivate the spectrum sensing policy
based on cross entropy-based spectrum sensing and
estimate the proposed method. The simulation results
of both Gaussian channel and Rayleigh fading
channel are shown in section IV. Finally, Section V

concludes the paper.

II. System Model

In this section, firstly, we introduce the spectrum
sensing method of [9] briefly. Afterwards we depict
the system model for our proposed spectrum sensing
method based on it.

1. The Spectrum Sensing Method of [9]

The authors of [9] emphasize the robustness of their
proposed method, and term it as entropy-based robust
spectrum sensing. Histogram diagram is adopted to
in [9]

partitioned into equal dimensions in frequency—domain.

estimate entropy with probability space
Then, the estimated entropy of noise is proved to be a
constant while the entropy of the PU signal is not,
which is the key reason why it is robust. Therefore the
spectrum sensing performance of [9] is superior to its
time domain counterpart.

We summarize the system model of [9] as Fig.l.

To have clear sense of the robustness of [9], we

Detected Signal
Current Sa o)
FFT resair?je >l &y > T >
O 1. OIS e AlA- =

System model of [9].
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Fig. 2. Estimated entropy of Gaussian White Noise.

re-simulate entropy distribution of noise when
estimating the entropy using different partitioning
schemes of histogram method. There are generally two
partitioning scheme. The first is fixed bin width, and
the number of bins changes with noise power. The
other is fixed bin number, and the bin width changes
with the spectrum magnitude. The authors of [9] has
shown that with probability space partitioned into fixed
dimensions, the entropy of the WGN 1is a constant, and
the frequency-domain entropy-based detection is thus
intrinsically robust against noise uncertainty, which is
confirmed by Fig.2

We have the following parameter settings: the
frequency is 60 kHz and the bin number is 15.
Sampling time duration is 0.001s. Each point is
obtained by averaging 10000 runs.

Fig.2 shows the estimated entropy of Gaussian
White Noise with fixed bin number and fixed bin
width. We observe that the estimated entropy is a
constant for a given bin number, whereas the entropy
is linearly proportional to noise power under a fixed bin
width. The results indicate that the entropy-based
detector can be robust against noise uncertainty by

partitioning the probability space into fixed dimension.

2. System Model of Proposed Method
Referring to [9], the structure of improved cross
entropy—based frequency—-domain detector is presented

as follows:
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Fig. 3. System model of improved cross entropy based

frequency—domain detector.

The structure of the improved cross entropy—based
detector in the frequency-domain is shown in Fig.3.
There are two sample data sets in Fig.3: one is
current spectrum sensing data sets and another is for
previous. FFT 1is applied to the both data sets.
Finally, a value is calculated based on improved cross
entropy, which will be further explained in section III.

Applying discrete Fourier transform (DFT) to a
signal with frequency bandwidth Bw and central
frequency £ The general discrete signal x(n) at the

received signal can be expressed as

y(n)zs(n)-i-w(n), n=20,1,...,.N (1)

Where s(n) is the primary signal of interest, win)
represents background noise which follows Gaussian
distribution N(0,0%), and N is the sample size. If
PU is active y(n) follows Gaussian distribution

N(0,6%),Y; =y(n),n=1,...,N.

We have following hypothesis in frequency-
domain.

Hy : Y(k)= W(k), ©)

H, : Y(k)=Sk)+ W(k), k=1,...,N

Where N is the DFT size, Y, S and W denote the
complex spectrum of the received signal, primary
signal, and noise respectively. In hypothesis H;, the
received signal consists of the both primary signal
and background noise. The authors of [9] have
shown the spectrum magnitude of the received signal
follows Rice distribution in #;, while with its
entropy generally different from that of Rayleigh
distribution in H,.

However, the relationships of the detected data set

==X H 48 # TCH H 3 =
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in previous and current spectrum sensing are not
considered in [9]. We will discuss this point in next

section.

III. The Articulation of Improved Cross
Entropy—Based Frequency—Domain Spectrum
Sensing

In this

entropy—based spectrum sensing, and then proposed

section, we first present the cross
the improved cross entropy-based frequency—-domain
spectrum sensing based on the analysis of cross
entropy-based spectrum sensing. And finally we

provide the estimate of spectrum sensing strategy.

3.1 The Cross Entropy—Based Spectrum
Sensing
The

distributions measures the average number of bits

cross entropy between two probability
needed to identify an event from a set of possibilities

7 Cross entropy is defined by (3).

H(p,q) Ep )log q(y

(6)

The

considers the relationship of previous and current

Cross entropy-based spectrum sensing
data sets of PU by calculating cross entropy of

neighboring  detected data sets. In  cross
entropy-based spectrum sensing, ¢( « ) indicates the
probability distribution of the magnitude of sampling
outputs in previous spectrum sensing, while p( )
indicates that in current spectrum sensing. Then the
cross entropy value is compared to a threshold to

decide the current PU state.

3.2 The Improved Cross Entropy—Based
Frequency—Domain Spectrum Sensing

From (3), we know,

g
= —%] p(y)log ply Zp )log p(y ﬁg)) )
= H(p) +D(pllq)
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Where H(p) indicates the entropy and D(pllg)
indicates the Kullback - Leibler divergencelgj.

Comparing (3) and (4) and scrutinize then more
carefully, we find that, the second term D(pllg) in
the last line of (4) has increased the value of (4)
comparing to entropy. As D(plq) = 0, H(p,q) = H(p).

Without losing of generality, consider that PU is
idle in previous spectrum sensing. To decide the
current state of PU, we take the cross entropy-based
spectrum sensing and the entropy-based spectrum
sensing respectively for comparison.

We the
c(y) = H(p,q) temporarily and consider following
two scenarios:

(1) The current state of PU is idle. A

cii
H,

el

define spectrum  sensing  strategy

indicates

the value of cross entropy. indicates the value of

entropy. D;; indicates the value of Kullback - Leibler
divergence.
H(H H( il + D (5)

Where, D;; = 0. The current state of PU is idle.

As the detected signal of previous spectrum sensing
is noise, which abides Gaussian distribution. The
detected signal of current spectrum sensing 1s noise
too, which also abides Gaussian distribution.

(2) The current state of PU H

cia

is active.

H,

indicates the value of cross entropy. H,,, indicates

the value of entropy. D,, indicates the value of

Kullback - Leibler divergence.

H,

cia

=H,,+D,,

ewa

(6)

Where, D,, > 0. The current state of PU is active.

As the detected signal of previous spectrum sensing
is noise, which abides Gaussian distribution. The
detected signal of current spectrum sensing is PU
signal polluted by noise, which abides a mixed
distribution.

Subtracting (6) from (5), we get,

H(‘ZZ H(’Z(l = HEZ’I + D HCZ(I D a
Heu Hem D a (7)
< H,,—H,

el eia
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D deteriorates the performance of cross

ia
entropy-based spectrum sensing, even renders its
discriminating ability worse than the entropy—based
spectrum sensing.

To improve the performance of cross entropy
spectrum sensing, and in the meanwhile to utilize the
state transfer information, we redefine ¢(y) in Fig.3

by ()
— D(pllg) ®)

In the case that PU is active in previous spectrum

sensing, we need not modify ¢(y), just set
c(y) = H(p,q). We have (9).
Cai — H€a1+D Heaa Daa
= HEUJ Heaa J’_ D (9)
> Hl’ﬂl Heaa
Where c¢,; indicates the value of (9) in scenario

that PU is active in previous spectrum sensing and
H, . and D, . are

idle in current spectrum sensing; H.,; i
corresponding to the entropy value and the Kullback

- Leibler divergence value. ¢,, indicates the value of

(9) in scenario that PU is active in both previous
H

spectrum sensing and current spectrum sensing; H.,,

and D

aa

the Kullback - Leibler divergence value.
We propose the Improved Cross Entropy-Based

are corresponding to the entropy value and

Frequency-Domain Spectrum Sensing as (10).

D(pllg) if PUisidle in previous detection
if PU is active in previous detection

(10)

Most of the time, when taking current spectrum
sensing, SU already knows the exact state of PU of

previous spectrum sensing. Thus, (10) is feasible.

3.3 The Estimate of Improved Cross
Entropy—Based Frequency—Domain
Spectrum Sensing

Following the entropy estimation method, we

consider the histogram method to estimate the
probability of each state. The spectrum sensing

window deals with a set of continuous /N samples
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Y;={y;},0<i<N. Then the range of the
maximum and minimum of Y; is separated into L
equal intervals with boundaries (I;,l,,,) for the Ath
interval. — A9, and + K9,

of the first and the last bin ,with K satisfying (11).

m, and ¢, are mean and variance of Y.

respectively central point

P(Y,—m,/) > K5,) < 1/K* (1D)

n, indicates the number of y; contained in the Ath

interval, with X,.#=~. Thenp(k)=n,/N,1 <k < L.
We can obtain the estimation: q(k) =n",/N1<k<L

in a similar manner, where n’, indicates the number

of samples falling into Ath interval, >.m=N. The
number of states of the random variable is equal to
the bin number Z. From (10), we get (12)

p(y)® if PUis idlein
q(y) previous detection

if PUisactivein

previous detection

Zp (y)log

(12)
Zp

cly) =
)og q(y)

Substituting value of p(k), g(k) into (12), we attain
the c(y) estimate as (13).

2
W) if PUisidlein

- Z —log 5 ; .
N n .’ previous detection
=) TV e
_ - Ny, Ny if PUisactivein
T N N’ previous detection

IV. Simulation

In this section, we have compared the performance
of the improved cross entropy-based frequency-
domain spectrum sensing with that of robust
entropy—based frequency—-domain spectrum sensingw'
9 We have applied same parameters with [9]. The
White
Gaussian Noise is selected as candidate signal. We
distribution of the

entropy—based frequency-domain Spectrum sensing

Single Sideband Signal contaminated by

improved cross

provide the

with two cases (casel when PU is idle in spectrum

sensing and case2 when PU is active in previous

==X M 48 HTCH K 3 = 55
spectrum sensing). We also provide the receiver
operation characteristic (ROC) in Gaussian channel

and Rayleigh fading channel.

To evaluate the performance of the improved cross
entropy—based frequency-domain spectrum sensing,
We consider, the bandwidth, By =12 kHz, the carrier
frequency, £ =40 kHz and the sampling frequency, £
=100 kHz. For the simulation result, the probability
space 1s partitioned into equal bin number, =15 and
the number of points in the FFT, N=128. The sample
size is 5000 and the nominal noise power is -90 dBm.
Each point in the following plots is the average of
1000 runs.

1. Gaussian Channel

(1) The Distribution of Estimated Entropy and Our
Proposed Method
We have compared with improved cross entropy-
based frequency-domain spectrum sensing with
entropy—based frequency-domain spectrum sensing.
The results are shown in Fig.4 and Figbh.
“CFE”

frequency—-domain spectrum sensing,

improved cross entropy—based
while “FE”

indicates entropy-based frequency-domain spectrum

indicates

sensing. Fig.4 describes the distribution of current
spectrum sensing values when PU is idle in previous

spectrum sensing and Fig.5 describes the distribution

25
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Fig. 4. When PU is idle in previous spectrum sensing.
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Fig. 5. When PU is active in previous spectrum
sensing.

of current spectrum sensing values when PU is
active in previous spectrum sensing. From Fig.4 and
Fig5, we can conclude that when PU is idle, the
detected signal is Gaussian noise which is random
and contains no information. However when PU is
active, the detected signal contains information, thus
it is no longer completely random and leads to a

decreased entropy signal.

(2) Comparison of Detection Performance

Fig6 shows the comparison of the detection
performance between the proposed scheme in two
cases (casel when PU is idle in previous spectrum

sensing and case2 when PU is active in previous

Pd of FE N
-- pd of CFE casel
-- pd of CFE case2 |.._|

S
S

Detectlon Performance
o
Ll

a3 6. ROC =Mel Ms dH|W
6. Comparison of detection performance.
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| >
&
|m
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>

iy 45 7iu EtAtR[OF 2|

spectrum sensing) and frequency-domain entropy-
based detection. This figure shows the detection
performances in both cases of proposed scheme are
better  than

entropy-based  frequency-domain

spectrum sensing.

(8)Comparison of Receiver Operation Characteristic

Fig.7 illustrates the ROC curves of improved cross
entropy-based frequency—domain spectrum sensing
and entropy-based frequency—domain  spectrum
sensing under Gaussian channel, where SNR=-10dB.
In this figure, it is observed that the improved
spectrum sensing strategy behaves best compared to

the current ones.
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Fig. 7. The comparison of ROC curves.

2. Rayleigh Fading Channel

The primary signal is a single sideband (SSB)
signal, which is assumed to experience deep fading
that the magnitude follows Rayleigh distribution with
the delay time of each path is 0.0ls and the path
numbers is 15.

(1) The Distribution of Estimated Entropy and Our
Proposed Method

To illustrate the improvement of the distribution of

improved cross entropy-based frequency—domain

spectrum  sensing comparing with  conventional

entropy—based frequency-domain spectrum sensing,

the case of the distribution of current spectrum
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Fig. 9. When PU is active in previous spectrum fading channel. Fig.11 shows that the detection ability

sensing. of the proposed scheme has outperformed than the

sensing values when PU is idle in previous spectrum
sensing and the distribution of current spectrum
sensing values when PU 1is active in previous
spectrum sensing under Rayleigh fading channel is
simulated and shown in Fig.8 and Fig.9. From Fig.8
and Fig9, we can conclude that the discriminating
ability has been strengthened by improved cross

entropy—based frequency-domain spectrum sensing.

(2) Comparison of Detection Performance

We have compared the detection performance of
the proposed scheme in two cases (casel when PU is
idle in previous spectrum sensing and case?2 when

PU is active in previous spectrum sensing) with the

(279)

entropy—based frequency—domain spectrum sensing.
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V. Conclusion

In this paper, an improved cross entropy-based
spectrum sensing has been proposed to improve the
detection performance. Cross entropy is adopted for
spectrum sensing to consider the relationship of
previous and current status data sets of PU. Based
on it, we proposed an improved cross entropy-based

spectrum sensing detects PU signal more efficiently.
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