• Title/Summary/Keyword: Information cascade

Search Result 269, Processing Time 0.035 seconds

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

Cascaded Structure of the High-Temperature Superconducting Hairpin-Comb Filter (고온초전도 헤어핀 콤 여파기의 cascade 구조에 관한 연구)

  • Yun, Seok-Sun;Park, Hee-Chan;Park, Ik-Mo;Min, Byoung-Chul;Choi, Young-Hwan;Moon, Seung-Hyun;Lee, Seung-Min;Oh, Byung-Du
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.28-34
    • /
    • 2001
  • To improve the skirt characteristic of the high-temperature superconducting filter, we proposed a structure of cascading two independent hairpin-comb filters with an identical frequency response. Resonators of the cascaded filter are arranged in the shape of a diamond so that it minimizes the cross coupling between the resonators. This structure can be used effectively to improve the skirt characteristic of the filter in limited area of a circular wafer. The simulated skirt characteristic of the 18 pole cascaded filter is more than 40dB/MHz attenuation below and above the passband.

  • PDF

Cascade AOA Estimation Algorithm Based on FMCCA Antenna (FMCCA 안테나 기반 캐스케이드 도래각 추정 알고리즘)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1081-1088
    • /
    • 2021
  • The modern wireless communication system employes the beamforming technique based on a massive array antenna with a number of elements, for supporting the smooth communication services. A reliable beamforming technology requires the Angle-of-Arrival(: AOA) information for the signal incident to the receiving antenna, which is generally estimated by the high-resolution AOA estimation algorithm such as Multiple Signal Classification(: MUSIC). Although the MUSIC algorithm has the excellent estimation performance, it is difficult to estimate AOA in real time for the massive array antenna due to the extremely high computational complexity. In order to enhance this problem, in this paper, we propose the cascade AOA estimation algorithm based on a Flexible Massive Concentric Circular Array(: FMCCA) antenna with the On/Off function for antenna elements. The proposed cascade algorithm consists of the CAPON algorithm using some elements among entire antenna elements and the Beamspace MUSIC algorithm using entire elements. We provide computer simulation results for various scenarios to demonstrate the AOA estimation performance of the proposed approach.

Model Predictive Control of Three-Phase Inverter for Uninterruptible Power Supply Applications under a Hexagonal Input Constraint Region (육각형 입력제약 공간을 이용한 무정전 전원장치의 모델예측제어)

  • Kim, Seok-Kyoon;Kim, Jung-Su;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • Using the classical cascade voltage control strategy, this paper proposes an analytical solution to an MPC (Model Predictive Control) problem with a hexagonal input constraint set for the inner-loop to regulate the output voltage of the UPS (Uninterruptible Power Supply). Focus is placed on how to deal with the hexagonal input constraint set without any approximation. Following the conventional cascade voltage control strategy, the PI (Proportional-Integral) controller is used in the outer-loop in order to regulate the output voltage. The simulation results illustrate that the capacitor voltage rapidly goes to its reference in a satisfactory manner while keeping other state variables bounded under an unexpected load changes.

A Study on Cascade Filter Algorithm for Random Valued Impulse Noise Elimination (랜덤 임펄스 잡음제거를 위한 캐스케이드 필터 알고리즘에 관한 연구)

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.598-604
    • /
    • 2012
  • Image signal is corrupted by various noises in image processing, many studies are being accomplished to restore those images. In this paper, we proposed a cascade filter algorithm for removing random valued impulse noise. The algorithm consists two steps that noise detection and noise elimination. Variance of filtering mask and center pixel variance are calculated for noise detection, and the noise pixel is replaced by estimated value which first apply switching self adaptive weighted median filter and finally processed by modified weight filter. Considering the proposed algorithm only remove noise and preserve the uncorrupted information that the algorithm can not only remove noise well but also preserve edge.

Pyramidal Deep Neural Networks for the Accurate Segmentation and Counting of Cells in Microscopy Data

  • Vununu, Caleb;Kang, Kyung-Won;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.335-348
    • /
    • 2019
  • Cell segmentation and counting represent one of the most important tasks required in order to provide an exhaustive understanding of biological images. Conventional features suffer the lack of spatial consistency by causing the joining of the cells and, thus, complicating the cell counting task. We propose, in this work, a cascade of networks that take as inputs different versions of the original image. After constructing a Gaussian pyramid representation of the microscopy data, the inputs of different size and spatial resolution are given to a cascade of deep convolutional autoencoders whose task is to reconstruct the segmentation mask. The coarse masks obtained from the different networks are summed up in order to provide the final mask. The principal and main contribution of this work is to propose a novel method for the cell counting. Unlike the majority of the methods that use the obtained segmentation mask as the prior information for counting, we propose to utilize the hidden latent representations, often called the high-level features, as the inputs of a neural network based regressor. While the segmentation part of our method performs as good as the conventional deep learning methods, the proposed cell counting approach outperforms the state-of-the-art methods.

Design of Low Power CMOS LNA for using Current Reuse Technique (전류 재사용 기법을 이용한 저전력 CMOS LNA 설계)

  • Cho In-Shin;Yeom Kee-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1465-1470
    • /
    • 2006
  • This paper presents a design of low power CMOS LNA(Low Noise Amplifier) for 2.4 GHz ZigBee applications that is a promising international standard for short area wireless communications. The proposed circuit has been designed using TSMC $0.18{\mu}m$ CMOS process technology and two stage cascade topology by current reuse technique. Two stage cascade amplifiers use the same bias current in the current reused stage which leads to the reduction of the power dissipation. LNA design procedures and the simulation results using ADS(Advanced Design System) are presented in this paper. Simulation results show that the LNA has a extremely low power dissipation of 1.38mW with a supply voltage of 1.0V. This is the lowest value among LNAs ever reported. The LNA also has a maximum gain of 13.38dB, input return loss of -20.37dB, output return loss of -22.48dB and minimum noise figure of 1.13dB.

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG (곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식)

  • Lee, Yeung-Hak;Ko, Joo-Young;Suk, Jung-Hee;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.654-662
    • /
    • 2010
  • In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using second-stage cascade method, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: (i) Histogram of Oriented Gradient (HOG) which includes gradient information and differential magnitude; (ii) Curvature-HOG which is based on four different curvature features per pixel. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using both HOG and curvature-HOG. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. For the recognition-failed image, the other feature and strong classification will be used for the second stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method.