• Title/Summary/Keyword: Information System Reliability

Search Result 2,683, Processing Time 0.035 seconds

Assessment of the Habitability for a Cabinet Fire in the Main Control Room of Nuclear Power Plant using Sensitivity Analysis (민감도 분석을 이용한 원전 주제어실의 케비닛 화재에 대한 거주성 평가)

  • Han, Ho-Sik;Lee, Jae-Ou;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.52-60
    • /
    • 2017
  • Numerical simulations were performed to evaluate the habitability of an operator for a cabinet fire in the main control room of a nuclear power plant presented in NUREG-1934. To this end, a Fire Dynamics Simulator (FDS), as a representative fire model, was used. As the criteria for determining the habitability of operator, toxic products, such as CO, were also considered, as well as radiative heat flux, upper layer temperature, smoke layer height, and optical density of smoke. As a result, the probabilities of exceeding the criteria for habitability were evaluated through the sensitivity analysis of the major input parameters and the uncertainty analysis of fire model for various fire scenarios, based on V&V (Verification and Validation). Sensitivity analyses of the maximum heat release rate, CO and soot yields, showed that the habitable time and the limit criterion, which determined the habitability, could be changed. The present methodology will be a realistic alternative to enhancing the reliability for a habitability evaluation in the main control room using uncertain information of cabinet fires.

Development and Comparative Analysis of Mapping Quality Prediction Technology Using Orientation Parameters Processed in UAV Software (무인기 소프트웨어에서 처리된 표정요소를 이용한 도화품질 예측기술 개발 및 비교분석)

  • Lim, Pyung-Chae;Son, Jonghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.895-905
    • /
    • 2019
  • Commercial Unmanned Aerial Vehicle (UAV) image processing software products currently used in the industry provides camera calibration information and block bundle adjustment accuracy. However, they provide mapping accuracy achievable out of input UAV images. In this paper, the quality of mapping is calculated by using orientation parameters from UAV image processing software. We apply the orientation parameters to the digital photogrammetric workstation (DPW) for verifying the reliability of the mapping quality calculated. The quality of mapping accuracy was defined as three types of accuracy: Y-parallax, relative model and absolute model accuracy. The Y-parallax is an accuracy capable of determining stereo viewing between stereo pairs. The Relative model accuracy is the relative bundle adjustment accuracy between stereo pairs on the model coordinates system. The absolute model accuracy is the bundle adjustment accuracy on the absolute coordinate system. For the experimental data, we used 723 images of GSD 5 cm obtained from the rotary wing UAV over an urban area and analyzed the accuracy of mapping quality. The quality of the relative model accuracy predicted by the proposed technique and the maximum error observed from the DPW showed precise results with less than 0.11 m. Similarly, the maximum error of the absolute model accuracy predicted by the proposed technique was less than 0.16 m.

The New X-ray Induced Electron Emission Spectrometer

  • Yu.N.Yuryev;Park, Hyun-Min;Lee, Hwack-Ju;Kim, Ju-Hwnag;Cho, Yang-Ku;K.Yu.Pogrebitsky
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.5-6
    • /
    • 2002
  • The new spectrometer for X-ray Induced Electron Emission Spectroscopy (XIEES) .has been recently developed in KRISS in collaboration with PTI (Russia). The spectrometer allows to perform research using the XAFS, SXAFS, XANES techniques (D.C.Koningsberger and R.Prins, 1988) as well as the number of techniques from XIEES field(L.A.Bakaleinikov et all, 1992). The experiments may be carried out with registration of transmitted through the sample x-rays (to investigate bulk samples) or/and total electron yield (TEY) from the sample surface that gives the high (down to several atomic mono-layers in soft x-ray region) near surface sensitivity. The combination of these methods together give the possibility to obtain a quantitative information on elemental composition, chemical state, atomic structure for powder samples and solids, including non-crystalline materials (the long range order is not required). The optical design of spectrometer is made according to Johannesson true focusing schematics and presented on the Fig.1. Five stepping motors are used to maintain the focusing condition during the photon energy scan (crystal angle, crystal position along rail, sample goniometer rail angle, sample goniometer position along rail and sample goniometer angle relatively of rail). All movements can be done independently and simultaneously that speeds up the setting of photon energy and allows the using of crystals with different Rowland radil. At present six curved crystals with different d-values and one flat synthetic multilayer are installed on revolver-type monochromator. This arrangement allows the wide range of x-rays from 100 eV up to 25 keV to be obtained. Another 4 stepping motors set exit slit width, sample angle, channeltron position and x-ray detector position. The differential pumping allows to unite vacuum chambers of spectrometer and x-ray generator avoiding the absorption of soft x-rays on Be foil of a window and in atmosphere. Another feature of vacuum system is separation of walls of vacuum chamber (which are deformed by the atmospheric pressure) from optical elements of spectrometer. This warrantees that the optical elements are precisely positioned. The detecting system of the spectrometer consists of two proportional counters, one scintillating detector and one channeltron detector. First proportional counter can be used as I/sub 0/-detector in transmission mode or by measuring the fluorescence from exit slit edge. The last installation can be used to measure the reference data (that is necessary in XANES measurements), in this case the reference sample is installed on slit knife edge. The second proportional counter measures the intensity of x-rays transmitted through the sample. The scintillating detector is used in the same way but on the air for the hard x-rays and for alignment purposes. Total electron yield from the sample is measured by channeltron. The spectrometer is fully controlled by special software that gives the high flexibility and reliability in carrying out of the experiments. Fig.2 and fig.3 present the typical XAFS spectra measured with spectrometer.

  • PDF

Design and Implementation of PS-Block Timing Model Using PS-Block Structue (PS-Block 구조를 사용한 PS-Block Timing Model의 설계 및 구현)

  • Kim Yun-Kwan;Shin Won;Chang Chun-Hyon;Kim Tae-Wan
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.399-404
    • /
    • 2006
  • A real-time system is used for various systems from small embedded systems to distributed enterprise systems. Because it has a characteristic that provides a service on time, developers should make efforts to keep this property about time when developing real-time applications. As the result of research about real-time system indicates, TMO model supports various functions for time processing according to the real-time concept. And it guarantees response time which developers defined. So developers need a point of reference to define deadline and check the correctness of time. This paper proposes an improved PS-Block as an infrastructure of analysis tools for TMO to present a point of reference. There is a problem that the existing PS-Block has overhead caused by a policy making duplicated blocks. As such, this paper implements a PS-Block Timing Model to reduce the overhead due to block duplication, and defines a base class for searching in PS-Block. The PS-Block Timing Model, using an improved PS-Block structure, offers a point of reference of deadline and an infrastructure of execution time analysis according to the PS-Block configuration policy. Therefore, TMO developers can easily verify deadline of real-time methods, and improve reliability, and reduce development terms.

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF

An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining (베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템)

  • Yun, Jiyoung;Shin, Gun-Yoon;Kim, Dong-Wook;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • With the development of the Internet and personal computers, various and complex attacks begin to emerge. As the attacks become more complex, signature-based detection become difficult. It leads to the research on behavior-based log anomaly detection. Recent work utilizes deep learning to learn the order and it shows good performance. Despite its good performance, it does not provide any explanation for prediction. The lack of explanation can occur difficulty of finding contamination of data or the vulnerability of the model itself. As a result, the users lose their reliability of the model. To address this problem, this work proposes an explainable log anomaly detection system. In this study, log parsing is the first to proceed. Afterward, sequential rules are extracted by Bayesian posterior probability. As a result, the "If condition then results, post-probability" type rule set is extracted. If the sample is matched to the ruleset, it is normal, otherwise, it is an anomaly. We utilize HDFS datasets for the experiment, resulting in F1score 92.7% in test dataset.

Waveform Decomposition of Airborne Bathymetric LiDAR by Estimating Potential Peaks (잠재적 피크 추정을 통한 항공수심라이다 웨이브폼 분해)

  • Kim, Hyejin;Lee, Jaebin;Kim, Yongil;Wie, Gwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1709-1718
    • /
    • 2021
  • The waveform data of the Airborne Bathymetric LiDAR (ABL; LiDAR: Light Detection And Ranging) system provides data with improved accuracy, resolution, and reliability compared to the discrete-return data, and increases the user's control over data processing. Furthermore, we are able to extract additional information about the return signal. Waveform decomposition is a technique that separates each echo from the received waveform with a mixture of water surface and seabed reflections, waterbody backscattering, and various noises. In this study, a new waveform decomposition technique based on a Gaussian model was developed to improve the point extraction performance from the ABL waveform data. In the existing waveform decomposition techniques, the number of decomposed echoes and decomposition performance depend on the peak detection results because they use waveform peaks as initial values. However, in the study, we improved the approximation accuracy of the decomposition model by adding the estimated potential peak candidates to the initial peaks. As a result of an experiment using waveform data obtained from the East Coast from the Seahawk system, the precision of the decomposition model was improved by about 37% based on evaluating RMSE compared to the Gaussian decomposition method.

Comparative Analysis of Annual Tropospheric Delay by Season and Weather (계절과 날씨에 따른 연간 대류권 지연오차량 변화)

  • Lim, Soo-Hyeon;Kim, Ji-Won;Park, Jeong-Eun;Bae, Tae-Suk;Hong, Sungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this study, we estimated the tropospheric delay of GNSS (Global Navigation Satellite System) signals during passing through the atmosphere in relation to weather and seasonal factors. For this purpose, we chose four CORS (Continuously Operating Reference Station) stations from inland (CCHJ and PYCH) and on the coast (GEOM and CHJU). A total of 48 days for each station (one set of data for each week) were downloaded from the NGII (National Geographic Information Institute) and processed it using the scientific GNSS software. The average tropospheric delays in winter are less than 2,400 mm, which is about 200 mm less than those in summer. The estimated tropospheric delay shows a similar pattern from all stations except the absolute bias in magnitude, while a large delay was observed for the station located on the coast. In addition, the delay during the day was relatively stable in winter, and the average tropospheric delay was strongly related to the orthometric height. The inland stations have tropospheric delays by the precipitation rather than humidity due to dry weather and difference in temperature. On the contrary, it was primarily caused by the humidity on the sea. The correlation between temperature and water vapor pressure is 0.9 or larger for all stations, and the tropospheric delay showed a high linear relationship with temperature. It is necessary to analyze the GNSS data with higher temporal resolution (e.g. all RINEX data of the year) to improve the stability and reliability of the correlation results.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).

A Study of Control for 3 Phase BLDC Motor using Control Methodology of DC Motor (직류전동기 제어기법을 적용한 3상 BLDC 모터 제어에 관한 연구)

  • Jin-Man Kim;Taek-Kun Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.704-711
    • /
    • 2023
  • This paper discusses the control method of BLDC(Brushless Direct Current) motor that has similar electrical characteristics with DC motor but has improved its lifespan and reliability. The BLDC motor can improve durability and speed stability by using rotor position information to eliminate commutators that require mechanical contact with DC motors. In this study, a controller for a DC motor was designed based on the fact that the current in the windings of a BLDC motor is a square-wave current like the current flowing in the armature of a DC motor. Next, the designed controller was applied to a 3-phase BLDC motor to confirm the effectiveness of the controller. In detail, a single-phase DC motor with electrical parameter values of a three-phase BLDC motor was modeled and a PI controller for motor speed control was designed by applying the root locus method to the derived system. The speed control simulation of the DC motor was performed to confirm the validity of the controller, and the same controller was applied to the speed control of the 3-phase BLDC motor implemented in MATLAB. From the simulation, similar results of the DC motor were obtained in the 3 phase BLDC motor and confirmed the usefulness of the proposed control scheme.