• Title/Summary/Keyword: Information Error

Search Result 11,131, Processing Time 0.04 seconds

Performance Analysis of UE for WCDMA due to Frequency Error (WCDMA 시스템에서 주파수 에러에 의한 단말기 성능 분석)

  • 이일규;송명선;임인성;이광일;오승엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.461-464
    • /
    • 2003
  • This paper explains the impact of frequency error on the performance of WCDMA mobile communication systems and what brings about the frequency error between the base station and the mobile station, and then presents automatic frequency error correction method in mobile receiver. On the basis of system requirement related to frequency stability, the integration test between the base station and the mobile station was accomplished. After applying automatic frequency error correction to mobile receiver, 4 Hz of frequency error at transmitting frequency was obtained. The result met frequency error requirement of 0.1ppm(about 200 Hz). Performance degradation due to frequency error was measured by means of Error Vector Magnitude (EVM)

  • PDF

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • Lee, Jin-Hyeon;Lee, Jae-Ha;Yang, Seong-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF

Closed-form for Bit Error Rate of MSK and OQPSK Systems with a Smart Antenna

  • Le Minh-Tuan;Pham Van-Su;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.176-178
    • /
    • 2005
  • This paper presents closed-form expressions for exact bit error rate of MSK and OQPSK systems employing an adaptive antenna array at base station to eliminate co-channel interference. The channels under consideration are AWGN and one-path flat Rayleigh fading with AWGN. Computer simulation is carried out to confirm the theoretical results.

Blind QR Code Steganographic Approach Based upon Error Correction Capability

  • Chiang, Yin-Jen;Lin, Pei-Yu;Wang, Ran-Zan;Chen, Yi-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2527-2543
    • /
    • 2013
  • A novel steganographic QR code algorithm, which not only coveys the secret into the widely-used QR barcode but also preserves the readability of QR content and the capability of error correction, is presented in this article. Different from the conventional applications for QR barcode, the designed algorithm conceals the secret into the QR modules directly by exploiting the error correction capability. General browsers can read the QR content from the QR code via barcode readers; however, only the authorized receiver can further reveal the secret from the QR code directly. The new mechanism can convey a larger secret payload along with adjustment of the QR version and error correction level. Moreover, the blind property allows the receiver to reveal the secret without the knowledge of the embedded position of modules. Experimental results demonstrate that the new algorithm is secure, efficient and feasible for the low-power QR readers and mobile devices.

The efficiency analysis of TIN construction considering DEM standard error (DEM 표준오차를 고려한 TIN 구축의 효용성 분석에 관한 연구)

  • 이근상;채효석;조기성
    • Spatial Information Research
    • /
    • v.11 no.1
    • /
    • pp.23-32
    • /
    • 2003
  • TIN is applied in pondage calculation and topography analysis. And much processing time and storage capacity are needed because TIN contains information as elevation, slope and aspect. In the construction of TIN using contour, weed tolerance that is used for the simplification of line is influenced on the sampling distance of contour. The processing time and storage capacity of TIN are calculated in according to the weed tolerance of various size in this research. And we estimated OEMs standard error that is created from TIN to present reasonable weed tolerance and decided the size of weed tolerance that satisfy DEM standard error. We got TINs weed tolerance that satisfy DEM standard error(5m) was 70m and DEMs resolution is 20m as estimation result.

  • PDF

A Study on the Wavelet based Still Image Transmission over the Wireless Channel (무선채널환경에서 웨이블릿 기반 정지영상 전송에 관한 연구)

  • Nah, Won;Baek, Joong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.179-182
    • /
    • 2001
  • This paper has been studied a wavelet based still image transmission over the wireless channel. EZW(Embedded Zerotree Wavelet) is an efficient and scalable wavelet based image coding technique, which provides progressive transfer of signal resulted in multi-resolution representation. It reduces therefore the reduce cost of storage media. Although EZW has many advantages, it is very sensitive on error. Because coding are performed in subband by subband, and it uses arithmetic coding which is a kind of variable length coding. Therefore only 1∼2bit error may degrade quality of the entire image. So study of error localization and recovery are required. This paper investigates the use of reversible variable length codes(RVLC) and data partitioning. RVLC are known to have a superior error recovery property due to their two-way decoding capability and data partitioning is essential to applying RVLC. In this work, we show that appropriate data partitioning length for each SNR(Signal-to-Noise Power Ratio) and error localization in wireless channel.

  • PDF

GPS/INS Fusion Using Multiple Compensation Method Based on Kalman Filter (칼만 필터를 이용한 GPS/INS융합의 다중 보정 방법)

  • Kwon, Youngmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.190-196
    • /
    • 2015
  • In this paper, we propose multiple location error compensation algorithm for GPS/INS fusion using kalman filter and introduce the way to reduce location error in 9-axis navigation devices for implementing inertial navigation technique. When evaluating location, there is an increase of location error. So navigation systems need robust algorithms to compensate location error in GPS/INS fusion. In order to improve robustness of 9-axis inertial sensor(mpu-9150) over its disturbance, we used tilt compensation method using compensation algorithm of acceleration sensor and Yaw angle compensation to have exact azimuth information of the object. And it shows improved location result using these methods combined with kalman filter.

A Base-Calling Error Detection Program for Use in Microbial Genome Projects (미생물 유전체 프로젝트 수행을 위한 Base-Calling 오류 감지 프로그램 및 알고리즘 개발)

  • Lee, Dae-Sang;Park, Kie-Jung
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.317-320
    • /
    • 2007
  • In this paper, we have developed base-calling error detection program and algorithm which show the list of the genes or sequences that are suspected to contain base-calling errors. Those programs detect dubious bases in a few aspects in the process of microbial genome project. The first module detects base-calling error from the Phrap file by using contig assembly information. The second module analyzes frame shift mutation if it is originated from real mutation or artifact. Finally, in the case that there is control microbial genome annotation information, the third module extracts and shows the candidate base-calling error list by comparative genome analysis method.

Experimental Verification on the Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • Effectiveness of a corrective machining algorithm, which can construct the proper machining information to improve motion errors utilizing measured motion errors, is verified experimentally in this paper, Corrective machining process is practically applied to single and double side hydrostatic bearing tables. Lapping process is applied as a machining method. The machining information is obtained from the measured motion errors by applying the algorithm, without any information on the rail profile. In the case of the single-side table, after 3 times of corrective remachining, linear and angular motion errors are improved up to 0.13 $\mu\textrm{m}$ and 1.40 arcsec from initial error of 1.04 $\mu\textrm{m}$ and 22.71 arcsec, respectively. In the case of the double-side table, linear and angular motion error are improved up to 0.07 /$\mu\textrm{m}$ and 1.42 arcsec from the initial error of 0.32 $\mu\textrm{m}$ and 4.14 arcsec. The practical machining process is performed by an unskilled person after he received a preliminary training in machining. Experimental results show that the corrective machining algorithm is very effective and easy to use to improve the accuracy of hydrostatic tables.

Soft Error Susceptibility Analysis for Sequential Circuit Elements Based on EPPM

  • Cai, Shuo;Kuang, Ji-Shun;Liu, Tie-Qiao;Wang, Wei-Zheng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.168-176
    • /
    • 2015
  • Due to the reduction in device feature size, transient faults (soft errors) in logic circuits induced by radiations increase dramatically. Many researches have been done in modeling and analyzing the susceptibility of sequential circuit elements caused by soft errors. However, to the best knowledge of the authors, there is no work which has well considerated the feedback characteristics and the multiple clock cycles of sequential circuits. In this paper, we present a new method for evaluating the susceptibility of sequential circuit elements to soft errors. The proposed method uses four Error Propagation Probability Matrixs (EPPMs) to represent the error propagation probability of logic gates and flip-flops in current clock cycle. Based on the predefined matrix union operations, the susceptibility of circuit elements in multiple clock cycles can be evaluated. Experimental results on ISCAS'89 benchmark circuits show that our method is more accurate and efficient than previous methods.