• Title/Summary/Keyword: Information Error

Search Result 11,146, Processing Time 0.038 seconds

A Study of the Representation in the Elementary Mathematical Problem-Solving Process (초등 수학 문제해결 과정에 사용되는 표현 방법에 대한 연구)

  • Kim, Yu-Jung;Paik, Seok-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.2
    • /
    • pp.85-110
    • /
    • 2005
  • The purpose of this study is to examine the characteristics of visual representation used in problem solving process and examine the representation types the students used to successfully solve the problem and focus on systematizing the visual representation method using the condition students suggest in the problems. To achieve the goal of this study, following questions have been raised. (1) what characteristic does the representation the elementary school students used in the process of solving a math problem possess? (2) what types of representation did students use in order to successfully solve elementary math problem? 240 4th graders attending J Elementary School located in Seoul participated in this study. Qualitative methodology was used for data analysis, and the analysis suggested representation method the students use in problem solving process and then suggested the representation that can successfully solve five different problems. The results of the study as follow. First, the students are not familiar with representing with various methods in the problem solving process. Students tend to solve the problem using equations rather than drawing a diagram when they can not find a word that gives a hint to draw a diagram. The method students used to restate the problem was mostly rewriting the problem, and they could not utilize a table that is essential in solving the problem. Thus, various errors were found. Students did not simplify the complicated problem to find the pattern to solve the problem. Second, the image and strategy created as the problem was read and the affected greatly in solving the problem. The first image created as the problem was read made students to draw different diagram and make them choose different strategies. The study showed the importance of first image by most of the students who do not pass the trial and error step and use the strategy they chose first. Third, the students who successfully solved the problems do not solely depend on the equation but put them in the form which information are decoded. They do not write difficult equation that they can not solve, but put them into a simplified equation that know to solve the problem. On fraction problems, they draw a diagram to solve the problem without calculation, Fourth, the students who. successfully solved the problem drew clear diagram that can be understood with intuition. By representing visually, unnecessary information were omitted and used simple image were drawn using symbol or lines, and to clarify the relationship between the information, numeric explanation was added. In addition, they restricted use of complicated motion line and dividing line, proper noun in the word problems were not changed into abbreviation or symbols to clearly restate the problem. Adding additional information was useful source in solving the problem.

  • PDF

A Comparative Study on the Effect of Enterprise SNS on Job Performance - Focused on the Mediation Effect of Communication Level and Moderating Effect of Nationality - (기업용 SNS 이용이 업무성과에 미치는 영향의 국가 간 비교연구 - 커뮤니케이션 수준의 매개효과와 국적의 조절효과를 중심으로 -)

  • Chen, Jing-Yuan;Kwon, Sun-Dong
    • Management & Information Systems Review
    • /
    • v.38 no.4
    • /
    • pp.137-157
    • /
    • 2019
  • Companies are trying to use enterprise SNS for collaboration and speedy decision-making. This study verified the mediating effect of communication between enterprise SNS and job performance, and proved the moderating effect of nationality between enterprise SNS and communication. This study collected survey data of 81 Korean and 81 Chinese from employees who have used enterprise SNS in Korea and China. As results of data analysis, first, enterprise SNS improved job performance through speedy information sharing and error reduction. Second, communication mediated the effect of enterprise SNS on job performance. Third, enterprise SNS increased the level of organizational communication through decreasing the burden of offline face-to-face communication. Compared with Chinese corporate organizations, Korean corporate organizations have high power distances, centralized control, and high superior authority. Therefore, in the off-line communication situation, the subordinate feels the social pressure to follow the command of the superior. Thus communication is one-way and closed. In this Korean organizational situation, corporate SNS can be used as a means to bypass rigid offline communication. In the online communication environment of non face-to-face corporate SNS, anxiety and stress of face-to-face communication can be reduced, so communication between the upper and lower sides can flow more smoothly. The contribution of this paper is that it proved that enterprise SNS promotes communication and improve job performance by reducing the anxiety or stress of offline communication, while according to prior research successful adoption of many types of information systems requires the fit between an organization and its organizational culture.

A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement (Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘)

  • Jeong Dong-Gil;Kang Dong-Goo;Yang Yu Kyung;Ra Jong Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we propose a two-stage head tracking algorithm adequate for real-time active camera system having pan-tilt-zoom functions. In the color convergence stage, we first assume that the shape of a head is an ellipse and its model color histogram is acquired in advance. Then, the min-shift method is applied to roughly estimate a target position by examining the histogram similarity of the model and a candidate ellipse. To reflect the temporal change of object color and enhance the reliability of mean-shift based tracking, the target histogram obtained in the previous frame is considered to update the model histogram. In the updating process, to alleviate error-accumulation due to outliers in the target ellipse of the previous frame, the target histogram in the previous frame is obtained within an ellipse adaptively shrunken on the basis of the model histogram. In addition, to enhance tracking reliability further, we set the initial position closer to the true position by compensating the global motion, which is rapidly estimated on the basis of two 1-D projection datasets. In the subsequent stage, we refine the position and size of the ellipse obtained in the first stage by using shape information. Here, we define a robust shape-similarity function based on the gradient direction. Extensive experimental results proved that the proposed algorithm performs head hacking well, even when a person moves fast, the head size changes drastically, or the background has many clusters and distracting colors. Also, the propose algorithm can perform tracking with the processing speed of about 30 fps on a standard PC.

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach (발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.55-75
    • /
    • 2010
  • Sequential pattern mining aims to discover interesting sequential patterns in a sequence database, and it is one of the essential data mining tasks widely used in various application fields such as Web access pattern analysis, customer purchase pattern analysis, and DNA sequence analysis. In general sequential pattern mining, only the generation order of data element in a sequence is considered, so that it can easily find simple sequential patterns, but has a limit to find more interesting sequential patterns being widely used in real world applications. One of the essential research topics to compensate the limit is a topic of weighted sequential pattern mining. In weighted sequential pattern mining, not only the generation order of data element but also its weight is considered to get more interesting sequential patterns. In recent, data has been increasingly taking the form of continuous data streams rather than finite stored data sets in various application fields, the database research community has begun focusing its attention on processing over data streams. The data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. In data stream processing, each data element should be examined at most once to analyze the data stream, and the memory usage for data stream analysis should be restricted finitely although new data elements are continuously generated in a data stream. Moreover, newly generated data elements should be processed as fast as possible to produce the up-to-date analysis result of a data stream, so that it can be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the correctness of its analysis result by allowing some error. Considering the changes in the form of data generated in real world application fields, many researches have been actively performed to find various kinds of knowledge embedded in data streams. They mainly focus on efficient mining of frequent itemsets and sequential patterns over data streams, which have been proven to be useful in conventional data mining for a finite data set. In addition, mining algorithms have also been proposed to efficiently reflect the changes of data streams over time into their mining results. However, they have been targeting on finding naively interesting patterns such as frequent patterns and simple sequential patterns, which are found intuitively, taking no interest in mining novel interesting patterns that express the characteristics of target data streams better. Therefore, it can be a valuable research topic in the field of mining data streams to define novel interesting patterns and develop a mining method finding the novel patterns, which will be effectively used to analyze recent data streams. This paper proposes a gap-based weighting approach for a sequential pattern and amining method of weighted sequential patterns over sequence data streams via the weighting approach. A gap-based weight of a sequential pattern can be computed from the gaps of data elements in the sequential pattern without any pre-defined weight information. That is, in the approach, the gaps of data elements in each sequential pattern as well as their generation orders are used to get the weight of the sequential pattern, therefore it can help to get more interesting and useful sequential patterns. Recently most of computer application fields generate data as a form of data streams rather than a finite data set. Considering the change of data, the proposed method is mainly focus on sequence data streams.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

A Method of Reproducing the CCT of Natural Light using the Minimum Spectral Power Distribution for each Light Source of LED Lighting (LED 조명의 광원별 최소 분광분포를 사용하여 자연광 색온도를 재현하는 방법)

  • Yang-Soo Kim;Seung-Taek Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.19-26
    • /
    • 2023
  • Humans have adapted and evolved to natural light. However, as humans stay in indoor longer in modern times, the problem of biorhythm disturbance has been induced. To solve this problem, research is being conducted on lighting that reproduces the correlated color temperature(CCT) of natural light that varies from sunrise to sunset. In order to reproduce the CCT of natural light, multiple LED light sources with different CCTs are used to produce lighting, and then a control index DB is constructed by measuring and collecting the light characteristics of the combination of input currents for each light source in hundreds to thousands of steps, and then using it to control the lighting through the light characteristic matching method. The problem with this control method is that the more detailed the steps of the combination of input currents, the more time and economic costs are incurred. In this paper, an LED lighting control method that applies interpolation and combination calculation based on the minimum spectral power distribution information for each light source is proposed to reproduce the CCT of natural light. First, five minimum SPD information for each channel was measured and collected for the LED lighting, which consisted of light source channels with different CCTs and implemented input current control function of a 256-steps for each channel. Interpolation calculation was performed to generate SPD of 256 steps for each channel for the minimum SPD information, and SPD for all control combinations of LED lighting was generated through combination calculation of SPD for each channel. Illuminance and CCT were calculated through the generated SPD, a control index DB was constructed, and the CCT of natural light was reproduced through a matching technique. In the performance evaluation, the CCT for natural light was provided within the range of an average error rate of 0.18% while meeting the recommended indoor illumination standard.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

Correlation among Ownership of Home Appliances Using Multivariate Probit Model (다변량 프로빗 모형을 이용한 가전제품 구매의 상관관계 분석)

  • Kim, Chang-Seob;Shin, Jung-Woo;Lee, Mi-Suk;Lee, Jong-Su
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.2
    • /
    • pp.17-26
    • /
    • 2009
  • As the lifestyle of consumers changes and the need for various products increases, new products are being developed in the market. Each household owns various home appliances which are purchased through the choice of a decision maker. These appliances include not only large-sized products such as TV, refrigerator, and washing machine, but also small-sized products such as microwave oven and air cleaner. There exists latent correlation among possession of home appliances, even though they are purchased independently. The purpose of this research is to analyze the effect of demographic factors on the purchase and possession of each home appliances, and to derive some relationships among various appliances. To achieve this purpose, the present status on the possession of each home appliances are investigated through consumer survey data on the electric and energy product. And a multivariate probit(MVP) model is applied for the empirical analysis. From the estimation results, some appliances show a substitutive or complementary pattern as expected, while others which look apparently unrelated have correlation by co-incidence. This research has several advantages compared to previous literatures on home appliances. First, this research focuses on the various products which are purchased by each household, while previous researches such as Matsukawa and Ito(1998) and Yoon(2007) focus just on a particular product. Second, the methodology of this research can consider a choice process of each product and correlation among products simultaneously. Lastly, this research can analyze not only a substitutive or complementary relationship in the same category, but also the correlation among products in the different categories. As the data on the possession of home appliances in each household has a characteristic of multiple choice, not a single choice, a MVP model are used for the empirical analysis. A MVP model is derived from a random utility model, and has an advantage compared to a multinomial logit model in that correlation among error terms can be derive(Manchanda et al., 1999; Edwards and Allenby, 2003). It is assumed that the error term has a normal distribution with zero mean and variance-covariance matrix ${\Omega}$. Hence, the sign and value of correlation coefficients means the relationship between two alternatives(Manchanda et al., 1999). This research uses the data of 'TEMEP Household ICT/Energy Survey (THIES) 2008' which is conducted by Technology Management, Economics and Policy Program in Seoul National University. The empirical analysis of this research is accomplished in two steps. First, a MVP model with demographic variables is estimated to analyze the effect of the characteristics of household on the purchase of each home appliances. In this research, some variables such as education level, region, size of family, average income, type of house are considered. Second, a MVP model excluding demographic variables is estimated to analyze the correlation among each home appliances. According to the estimation results of variance-covariance matrix, each households tend to own some appliances such as washing machine-refrigerator-cleaner-microwave oven, and air conditioner-dish washer-washing machine and so on. On the other hand, several products such as analog braun tube TV-digital braun tube TV and desktop PC-portable PC show a substitutive pattern. Lastly, the correlation map of home appliances are derived using multi-dimensional scaling(MDS) method based on the result of variance-covariance matrix. This research can provide significant implications for the firm's marketing strategies such as bundling, pricing, display and so on. In addition, this research can provide significant information for the development of convergence products and related technologies. A convergence product can decrease its market uncertainty, if two products which consumers tend to purchase together are integrated into it. The results of this research are more meaningful because it is based on the possession status of each household through the survey data.

  • PDF

Fast Full Search Block Matching Algorithm Using The Search Region Subsampling and The Difference of Adjacent Pixels (탐색 영역 부표본화 및 이웃 화소간의 차를 이용한 고속 전역 탐색 블록 정합 알고리듬)

  • Cheong, Won-Sik;Lee, Bub-Ki;Lee, Kyeong-Hwan;Choi, Jung-Hyun;Kim, Kyeong-Kyu;Kim, Duk-Gyoo;Lee, Kuhn-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.102-111
    • /
    • 1999
  • In this paper, we propose a fast full search block matching algorithm using the search region subsampling and the difference of adjacent pixels in current block. In the proposed algorithm, we calculate the lower bound of mean absolute difference (MAD) at each search point using the MAD value of neighbor search point and the difference of adjacent pixels in current block. After that, we perform block matching process only at the search points that need block matching process using the lower bound of MAD at each search point. To calculate the lower bound of MAD at each search point, we need the MAD value of neighbor search point. Therefore, the search points are subsampled at the factor of 4 and the MAD value at the subsampled search points are calculated by the block matching process. And then, the lower bound of MAD at the rest search points are calculated using the MAD value of the neighbor subsampled search point and the difference of adjacent pixels in current block. Finally, we discard the search points that have the lower bound of MAD value exceed the reference MAD which is the minimum MAD value of the MAD values at the subsampled search points and we perform the block matching process only at the search points that need block matching process. By doing so, we can reduce the computation complexity drastically while the motion compensated error performance is kept the same as that of full search block matching algorithm (FSBMA). The experimental results show that the proposed method has a much lower computational complexity than that of FSBMA while the motion compensated error performance of the proposed method is kept same as that of FSBMA.

  • PDF