• Title/Summary/Keyword: Influenza A Virus

Search Result 390, Processing Time 0.027 seconds

Immunogenicity and protective effects of a novel reassortant influenza live virus, NC-22-8

  • Chung, Young-Mee;Kim, Seong-Woo;Chun, Hyung-Ok;Kim, Young-Gi;Kim, Hyun-Ah;Kim, Yeon-Hee;Ha, Suk-Hoon;Chae, Myeong-Yun;Park, Wan-Je
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.135.3-136
    • /
    • 2003
  • In the present study, type A influenza live virus, NC-22-8, which is a combination of a cold-adapted attenuated donor virus (HTCA-A101) and a wild type virus (A/New Caledonia/20/99), was constructed and the efficacy of this new virus was assessed by immunogenicity and protection tests in the mouse model. NC-22-8 (1'$10^7, 1'10^5, 1'10^3$ pfu/mouse) was intranasally administered to mice. Four weeks later, the titers of specific IgG and haemagglutinin inhibiton (HI) were measured from blood and the titer of secretary IgA (sIgA) was also detected from boncho alveolar lavage (BAL) and mucosal fluid. (omitted)

  • PDF

Clinical characteristics of 2009 pandemic influenza A (H1N1) infection in children and the performance of rapid antigen test

  • Park, Yong-Jae;Jin, Jang-Yong;Yang, Hyeon-Jong;Lee, Woo-Ryung;Lee, Dong-Hwan;Pyun, Bok-Yang;Suh, Eun-Sook
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.10
    • /
    • pp.405-408
    • /
    • 2011
  • Purpose: In autumn 2009, the swine-origin influenza A (H1N1) virus spread throughout South Korea. The aims of this study were to determine the clinical characteristics of children infected by the 2009 H1N1 influenza A virus, and to compare the rapid antigen and realtime polymerase chain reaction (PCR) tests. Methods: We conducted a retrospective review of patients ${\geq}18$ years of age who presented to Soonchunhyang University Hospital in Seoul with respiratory symptoms, including fever, between September 2009 and January 2010. A real-time PCR test was used to definitively diagnose 2009 H1N1 influenza A infection. Medical records of confirmed cases were reviewed for sex, age, and the time of infection. The decision to perform rapid antigen testing was not influenced by clinical conditions, but by individual factors such as economic conditions. Its sensitivity and specificity were evaluated compared to real-time PCR test results. Results: In total, 934 patients tested positive for H1N1 by real-time PCR. The highest number of patients (48.9%) was diagnosed in November. Most patients (48.2%) were aged between 6 and 10 years. Compared with the H1N1 real-time PCR test results, the rapid antigen test showed 22% sensitivity and 83% specificity. Seventy-eight patients were hospitalized for H1N1 influenza A virus infection, and fever was the most common symptom (97.4%). Conclusion: For diagnosis of 2009 H1N1 influenza A virus infection, the rapid antigen test was inferior to the real-time PCR test in both sensitivity and specificity. This outcome suggests that the rapid antigen test is inappropriate for screening.

Association between Respiratory Virus Infection and Pneumococcal Colonization in Children (소아에서의 호흡기바이러스 감염과 비인두 폐렴구균 보균의 연관성)

  • Lee, Hyeon Seung;Choe, Young June;Cho, Eun Young;Lee, Hyunju;Choi, Eun Hwa;Lee, Hoan Jong
    • Pediatric Infection and Vaccine
    • /
    • v.21 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • Purpose: This study aimed to investigate the association between respiratory virus infection and pneumococcal colonization in children. Methods: From May 2009 to June 2010, nasopharyngeal (NP) aspirates were obtained from patients under 18 years old who visited Seoul National University Children's Hospital for respiratory symptoms. NP samples were used to detect respiratory viruses (influenza virus A and B, parainfluenza virus 1, 2 and 3, respiratory syncytial virus A and B, adenovirus, rhinovirus A/B, human metapneumovirus, human coronavirus 229E/NL63 and OC43/HKU1) by RT-PCR and pneumococcus by culture. Results: Median age of the patients was 27 months old. A total of 1,367 NP aspirates were tested for respiratory viruses and pneumococcus. Pneumococcus was isolated from 228 (16.7%) of samples and respiratory viruses were detected from 731 (53.5%). Common viruses were rhinovirus (18.4%), respiratory syncytial virus (RSV) A (10.6%), adenovirus (6.9%), influenza virus A (6.8%). Pneumococcal isolation rate was significantly higher in the cases of positive virus detection than negative detection [21.3% (156/731) vs. 11.3% (72/636), P <0.001]. For individual viruses, pneumococcal isolation rate was positively associated with detection of influenza virus A [24.7% (23/93) vs 16.1% (205/1274), P=0.001], RSV A [28.3% (41/145) vs 15.3% (187/1222), P=0.001], RSV B [31.3% (10/32) vs 16.3% (218/1335), P=0.042], rhinovirus A/B [22.6% (57/252) vs 15.3% (171/1115), P=0.010]. Conclusion: The study revealed that pneumococcal isolation from NP aspirates is related with respiratory virus detection. The result of this study could be used to investigate how respiratory viruses and pneumococcus cause clinical diseases.

Enhancement of DNA Vaccine-induced Immune Responses by Influenza Virus NP Gene

  • Choi, So-Young;Suh, You-Suk;Cho, Jae-Ho;Jin, Hyun-Tak;Chang, Jun;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.169-178
    • /
    • 2009
  • DNA immunization induces B and T cell responses to various pathogens and tumors. However, these responses are known to be relatively weak and often transient. Thus, novel strategies are necessary for enhancing immune responses induced by DNA immunization. Here, we demonstrated that co-immunization of influenza virus nucleoprotein (NP) gene significantly enhances humoral and cell-mediated responses to codelivered antigens in mice. We also found that NP DNA coimmunization augments in vivo proliferation of adoptively transferred antigen-specific CD4 and CD8 T cells, which enhanced protective immunity against tumor challenge. Our results suggest that NP DNA can serve as a novel genetic adjuvant in cocktail DNA vaccination.

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

Synthesis of (5R,8R)-2-(3,8-Dimethyl-2-oxo-1,2,4,5,6,7,8,8α-octahydroazulen-5-yl) Acrylic Acid (Rupestonic Acid) Amide Derivatives and in vitro Inhibitive Activities against Influenza A3,B and Herpes Simplex Type 1 and 2 Virus

  • Yong, Jian-Ping;Lv, Qiao-Ying;Aisa, Haji Akber
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.435-440
    • /
    • 2009
  • 19 Aromatic ring and L-amino acid ester contained rupestonic acid amide derivatives 2a~2l, 3a~3g were synthesized and preliminarily evaluated in vitro against influenza virus $A_3$,B and herpes simplex virus type 1 (HSV-1), 2(HSV-2) by the national center for drug screening of China. The rusults showed that 2i possessed the highest inhibition against both influenza virus $A_3\;(TC_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;19.2\;{\mu}$mol/L, SI = 6.3) and B (T$C_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;29.9\;{\mu}$mol/L, SI = 4.0); 2g was more active against influenza $A_3$ virus at very low cytotoxicity ($TC_{50}\;>\;2092.1\;{\mu}mol/L,\;IC_{50}=\;143.7\;{\mu}mol/L,$ SI > 14.6) than the parent compound; Compounds 2b, 2c, 2f showed higher activities both against HSV-1 and HSV-2 than that of the parent compound, and 2f was the most potent inhibitor of HSV-1 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;11.3\;{\mu}mol$/L, SI = 17.7 ) and HSV-2 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;20.7\;{\mu}mol$/L , SI = 9.7).

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.24.1-24.10
    • /
    • 2022
  • Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

Comparison of serological methods for detection of avian influenza virus antibodies (가금인플루엔자 바이러스 항체검출을 위한 혈청학적 진단법 비교)

  • Han, Myung-guk;Park, Kyoung-yoon;Kwon, Yong-kuk;Kim, Jae-hong
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.73-80
    • /
    • 2002
  • An enzyme-linked immunosorbent assay (ELISA) using purified hemagglutinin of swine influenza virus (H1N1) as antigen was developed for detection of antibody to avian influenza virus (AIV). The sensitivity and specificity of a developed and commercial available ELISA kits were compared with those of agar gel precipitation (AGP) test and hemagglutination inhibition (HI) test using sera collected from chickens under condition of field exposure. The concentration of antigen, serum dilution and concentration of enzyme-conjugated secondary antibody in developed ELISA (S-ELISA) were 0.5ug/100ul, 1:200 and 0.03ug/100ul, respectively. The correlation coefficients between S-ELISA and commercial ELISA and HI titers were 0.419 and 0.533, respectively. A significant correlation (p < 0.01) was not found between HI and ELISA titers. The S-ELISA was found to be as more sensitive and specific than the AGP test, showing 86.8% sensitivity and 85.3% specificity. It is suggested that the ELISA using the SIV as antigen may be useful method as an investigating tool for AIV serological surveillance.

Influenza M1 Virus-Like Particles Consisting of Toxoplasma gondii Rhoptry Protein 4

  • Lee, Su-Hwa;Lee, Dong-Hun;Piao, Ying;Moon, Eun-Kyung;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.143-148
    • /
    • 2017
  • Toxoplasma gondii infections occur throughout the world, and efforts are needed to develop various vaccine candidates expressing recombinant protein antigens. In this study, influenza matrix protein (M1) virus-like particles (VLPs) consisting of T. gondii rhoptry antigen 4 (ROP4 protein) were generated using baculovirus (rBV) expression system. Recombinant ROP4 protein with influenza M1 were cloned and expressed in rBV. SF9 insect cells were coinfected with recombinant rBVs expressing T. gondii ROP4 and influenza M1. As the results, influenza M1 VLPs showed spherical shapes, and T. gondii ROP4 protein exhibited as spikes on VLP surface under transmission electron microscopy (TEM). The M1 VLPs resemble virions in morphology and size. We found that M1 VLPs reacted with antibody from T. gondii-infected mice by western blot and ELISA. This study demonstrated that T. gondii ROP4 protein can be expressed on the surface of influenza M1 VLPs and the M1 VLPs containing T. gondii ROP4 reacted with T. gondii-infected sera, indicating the possibility that M1 VLPs could be used as a coating antigen for diagnostic and/or vaccine candidate against T. gondii infection.