• Title/Summary/Keyword: Inflow pathway

Search Result 25, Processing Time 0.025 seconds

Influences of Asian Dust, Haze, and Mist Events on Chemical Compositions of Fine Particulate Matters at Gosan Site, Jeju Island in 2014 (황사, 연무, 박무 현상이 미세먼지 화학조성에 미치는 영향: 2014년 제주도 고산지역 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Yang, Seung-Hyuk;Lee, Jae-Yun;Kim, Won-Hyung;Kang, Chang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.67-81
    • /
    • 2016
  • In order to examine the variation characteristics of chemical compositions in accordance with the different meteorological conditions, $PM_{10}$ and $PM_{2.5}$ were collected at Gosan site of Jeju Island in 2014, and then their ionic and elemental species were analyzed. The concentrations of nss-$SO{_4}^{2-}$ and $NH_4{^+}$ were respectively 4.3 and 3.3 times higher in fine particle mode ($PM_{2.5}$) compared to coarse particle mode ($PM_{10-2.5}$), however $NO_3{^-}$ concentration was 1.6 times higher in coarse mode compared to fine particle mode. During Asian dust days, the concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ increased highly as 7.7 and 4.5 times in coarse particle mode, and 3.0 and 4.9 times higher in fine particles, respectively. Especially, the concentrations of the crustal species (Al, Fe, Ca, K, Mn, Ba, Sr, etc.) indicated a noticeable increase during the Asian dust days. For the haze days, the concentrations of secondary pollutants increased 2.2~2.7 and 2.9~6.0 times in coarse and fine particles, respectively, and they were 0.8~1.1 and 1.8~2.4 times, respectively, during the mist days. The aerosols were acidified largely by sulfuric and nitric acids, and neutralized mainly by ammonia in fine particle mode during the haze days, but neutralized by calcium carbonate in coarse particle mode during the Asian dust days. The clustered back trajectory analysis showed that the concentrations of nss-$SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ were relatively high when the inflow pathway of air mass was from the southern part of China.

Accumulation Property in Human Body of Benzene Derived from Groundwater According to Exposure Pathway (지하수에서 유래한 벤젠의 노출경로별 인체축적특성)

  • 김상준;이현호;박지연;이유진;유동한;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.12-27
    • /
    • 2004
  • The contamination pattern of indoor air was simulated when groundwater dissolving benzene was used for household activities. Indoor exposure scenario consisted of inhalation, ingestion, and dermal absorption. Physiologically based pharmacokinetic (PBPK) model was used to analyze how benzene exposed to human body was distributed in internal organs. Main exposure pathways contributing total internal dose were inhalation and ingestion while the contribution of dermal absorption was very small. Man showed higher exposure rate than woman due to his higher breath rate. For a short-term exposure, benzene concentration in venous blood of SPT, RPT and liver changed rapidly while slowly did in venous blood of adipose tissue at a low concentration. For a long-term exposure, woman accumulated about 2.1 times higher than man. Most of benzene exposed to human body was removed by exhalation and metabolism at lung and liver, respectively. For inhalation and ingestion, the benzene removals by exhalation were 69.8 and 48.4%, respectively. Relative importance of removal mechanism was different according to the inflow displacement of benzene. The results obtained from this study would help understand exposure, distribution, and removal phenomena and make plans for the reduction of the health risk associated with the contaminated groundwater by various organic compounds.

Assessment of the Cause and Pathway of Contamination and Sustainability in an Abandoned Mine (폐광산 오염원인 분석 및 오염경로, 향후 지속가능성에 대한 평가)

  • Kim, Min Gyu;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.411-429
    • /
    • 2018
  • Daeyoung mine (also called "Daema mine") produced gold and silver from mainly gold- and silver-bearing quartz veins. The mine tailings are a waste hazard, but most of the tailings were swept away or dispersed throughout the area around the mine long before the tailing dump areas were transformed into agricultural land. Soil liner and protection facilities, such as retaining walls, were constructed in the mine area to prevent the loss of tailings. The content of the tailings is 3,424.41~3,803.61 mg/kg, which exceeds the safety standard by a factor of 45. In addition, contamination was detected near agricultural areas and in the sediments in downstream drainage channels. A high level of As contamination was concentrated near the waste tailings yard; comparaable levels were detected in agricultural areas close to streams that ran through the waste dump yard, whereas the levels were much lower in areas far from the streams. The contamination in stream sediments showed a gradual decrease with distance from the mine waste yard. Based on these contamination patterns, we concluded that there are two main paths that affect the spread of contaminants: (1) loss of mine waste, and (2) the introduction of mine waste into agricultural areas by floods after transportation by streams. The agricultural areas contaminated by mass inflow of mine waste can act as contamination sources themselves, affecting other agricultural areas through the diffusion of contaminants. At present, although the measured effect in minimal, sediments in streams are contaminated by exposed mine waste and surface liners. It is possible for contaminants to diffuse or spread into nearby areas if heavy elements trapped in soil grains in contaminated agricultural areas leach out as soil solution or contaminant particles during diffusion into the water supply.

Water shortage assessment by applying future climate change for boryeong dam using SWAT (SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가)

  • Kim, Won Jin;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1195-1205
    • /
    • 2018
  • In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.