• Title/Summary/Keyword: Inflammatory transcription factor

Search Result 349, Processing Time 0.026 seconds

AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract

  • Han, Sang Yun;Kim, Juewon;Kim, Eunji;Kim, Su Hwan;Seo, Dae Bang;Kim, Jong-Hoon;Shin, Song Seok;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.496-503
    • /
    • 2018
  • Background: Korean ginseng (Panax ginseng) plays an anti-inflammatory role in a variety of inflammatory diseases such as gastritis, hepatitis, and colitis. However, inflammation-regulatory activity of the calyx of the P. ginseng berry has not been thoroughly evaluated. To understand whether the calyx portion of the P. ginseng berry is able to ameliorate inflammatory processes, an ethanolic extract of P. ginseng berry calyx (Pg-C-EE) was prepared, and lipopolysaccharide-activated macrophages and HEK293 cells transfected with inflammation-regulatory proteins were used to test the anti-inflammatory action of Pg-C-EE. Methods: The ginsenoside contents of Pg-C-EE were analyzed by HPLC. Suppressive activity of Pg-C-EE on NO production, inflammatory gene expression, transcriptional activation, and inflammation signaling events were examined using the Griess assay, reverse transcription-polymerization chain reaction, luciferase activity reporter gene assay, and immunoblotting analysis. Results: Pg-C-EE reduced NO production and diminished mRNA expression of inflammatory genes such as cyclooxygenase-2, inducible NO synthase, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. This extract suppressed luciferase activity induced only by nuclear factor-${\kappa}B$. Interestingly, immunoblotting analysis results demonstrated that Pg-C-EE reduced the activities of protein kinase B (AKT)1 and AKT2. Conclusion: These results suggest that Pg-C-EE may have nuclear-factor-${\kappa}B$-targeted anti-inflammatory properties through suppression of AKT. The calyx of the P. ginseng berry is an underused part of the ginseng plant, and development of calyx-derived extracts may be useful for treatment of inflammatory diseases.

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong;Byung Soo Kim;Sae Mi Hwang;Hyune Hwan Lee;Il Yup Chung
    • IMMUNE NETWORK
    • /
    • v.16 no.3
    • /
    • pp.176-182
    • /
    • 2016
  • CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

Effects of Lithospermum erythrorhizon on the cytokine gene expression in human keratinocytes (자초(紫草)가 HaCaT 세포의 사이토카인 유전자 발현에 미치는 영향)

  • Kang, Sang-Hoon;Kim, Gyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.1
    • /
    • pp.50-62
    • /
    • 2013
  • Objective : Propionibacterium acnes (P. acnes) is a major pathogenic bacteria for acne vulgaris. This study was performed to evaluate the effects of Lithospermum erythrorhizon extracts on the inflammatory cytokines gene expression by P. acnes in human keratinocytes, HaCaT cell line. Methods : Anti-bacterial activity and cytotoxicity of LE extracts was analyzed by agar plate culture and XTT assay. The cytokines gene expressions were assessed by real time RT-PCR for IL-8, MCP-1 and TNF-${\alpha}$. During the cell culture and treatments, amounts of secreted TNF-${\alpha}$ were measured by ELISA. Translocation of transcription factor NF-${\kappa}B$ from cytoplasm into nucleus was observed by immunocytochemistry and confocal microscopy. Results : There were no anti-bacterial effects and cytotoxicity as high as $1,000{\mu}g/ml$ of LE extracts in XTT assay. Transcription levels of inflammatory cytokines, IL-8, MCP-1 and TNF-${\alpha}$ were increased by P. acnes in HaCaT. LE extracts decreased the upregulated gene transcription levels. However, amounts of secreted TNF-${\alpha}$ were similar in HaCaT cells with P. acnes and LE extracts. Translocation of NF-${\kappa}B$ into nucleus by P. acnes was significantly inhibited by LE extracts. Conclusions : From the results of this study, LE extracts have anti-inflammatory effects on HaCaT cells by P. acnes that decreased the mRNA expressions of IL-8, MCP-1 and TNF-${\alpha}$. This anti-inflammatory effects of LE extracts could provide the potential of therapeutic substance for acne vulgaris.

The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Hwang, Ji-Young;Ko, Yong-Hyun;Seo, Ji-Yeon;Lee, Bo-Ram;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.268-282
    • /
    • 2016
  • In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$), and their downstream transcription factor, nuclear factor-kappa B ($NF-{\kappa}B$). EUE also blocked the nuclear translocation of $NF-{\kappa}B$ and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and $PGE_2$ production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and $GSK-3{\beta}$, consequently suppressing $NF-{\kappa}B$ activation and inducing Nrf2-dependent HO-1 activation.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.

Recent Prospect of Compounds Derived from Marine Macroalgae for Medicinal Application of Anti-Inflammation for Chemoprevention of Cancer

  • Kim, Moon-Moo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.8-14
    • /
    • 2011
  • Although marine living organism contains a numerious number of compounds, it is difficult to collect these compounds in a large scale for medicinal application. However, in recent years, several bioactive compounds isolated from marine macroalgae have been proved to be able to provide potential sources for development of medicinal products because they can be obtained in large amount from marine. A number of studies have reported a variety of effects of marine macroalgae but a few anti-inflammatory activity of marine macroalgae have recently been published. Herein, we reviewed novel anti-inflammatory compounds recently isolated from marine brown algae, green algae and red algae. From this survey, in particular, some compounds contained in edible macroalgae exert anti-inflammatory effects with inhibition on cyclooxygenase-2 (COX-2), inducible nitric oxide synthase(iNOS) and matrix metalloproteinases (MMPs) activity regulated by nuclear factor-kappa B transcription factor that play a key role in cancer as well as inflammation, demonstrating to be able to potentially apply to development of anti-inflammatory agent for chemoprevention of cancer. Furthermore, some macroalgae and their compounds with both excellent anti-inflammatory activity and very low toxicity can select a potential candidates capable of preventing or treating several chronic inflammation such as colitis, hepatitis and gastritis, leading to cancer.

Anti-inflammatory Effects of Saussurea Lappa Extracts in Murine Macrophages (설치류 대식세포에서 목향(木香) 추출물의 항염증 효과)

  • Lee, Min-Suk;Ryu, Do-Gon;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.275-279
    • /
    • 2011
  • In order to validate the use of Saussurea Lappa as an anti-inflammatory drug in the traditional Korean medicine, I have investigated the effects of water-soluble extract of Saussurea Lappa (ESL) on the production of pro-inflammatory tumor necrosis factor-alpha (TNF-${\alpha}$) in murine RAW 264.7 macrophages stimulated with the endotoxin lipopolysaccharide (LPS). The extract inhibited dose-dependently TNF-${\alpha}$ production without its cytotoxic effect on the macrophages, as measured by enzyme-linked immunosorbent assay, and significantly decreased mRNA levels of TNF-${\alpha}$, as determined using reverse transcription polymerase chain reaction. The extract also inhibited LPS-induced activation of nuclear factor-${\kappa}B$, thereby resulting in TNF-${\alpha}$ gene expression. These results suggest that ESL may have therapeutic potential in the control of inflammatory diseases mediated by activated macrophages.

Anti-Oxidative and Anti-Inflammatory Effects of Malus huphensis, Ophiorrhiza cantonensis, and Psychotria rubra Ethanol Extracts (Malus huphensis, Ophiorrhiza cantonensis, Psychotria rubra 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.275-284
    • /
    • 2014
  • This study was orchestrated with the purpose of uncovering new nutraceutical resources possessing biological activities in the plant kingdom. To fulfill our objective, we analyzed several Chinese plants and selected three possessing powerful anti-oxidative activities. The anti-oxidative and anti-inflammatory effects these three Chinese plants, Malus hupehensis, Ophiorrhiza cantonensis, and Psychotria rubra ethanol extracts were then evaluated. First of all, they possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl, similar with that of ascorbic acid, used as a positive control. Moreover, they inhibited lipopolysaccharide (LPS)- and hydrogen peroxide-induced reactive oxygen species, in a dose-dependent manner, in RAW 264.7 cells. Also, they induced the expression of an anti-oxidative enzyme, heme oxygenase 1, and its upstream transcription factor, nuclear factor-E2-related factor 2. Furthermore, they suppressed LPS-induced nitric oxide (NO) formation, without cytotoxicity. The inhibition of NO formation was the result of the down regulation of inducible NO synthase (iNOS). The suppression of NO and iNOS by the three extracts might be the result of modulation by the upstream transcription factors, nuclear factor ${\kappa}B$ and activator protein-1. Taken together, these results indicate that these three Chinese plants possess potent anti-oxidative and anti-inflammatory activities. Therefore, they might be utilized as promising materials in the field of nutraceuticals.

Inhibitory Effect of Rosmarinic acid Extrcted from Euonymus Alatus on Cyclooxygenase-2

  • Ryu, Jung-Man
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.111-117
    • /
    • 2008
  • Objectives and methods : Previous mechanistic studies suggest the cyclooxygenase-2 (COX-2) inhibitors represent the good candidates against tumor progression. MeOH extract of the stem barks of Euonymus alatus induced the strong inhibition of COX-2. A phenolic compound responsible for the anti- COX-2 known to involve in tumor adhesion and invasion has been studied through the methanol extracts. The compound, rosmarinic acid (ROS-A) was an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. ROS-A showed a strong inhibitory effect of COX-2 activity in a concentration-dependent manner. Then we have measured the IL-1${\beta}$, IL-6 and TNF-${\alpha}$ production related the immune regulation, induction of inflammatory related genes. Results and Conclusions :Hep3B cells produce proinflammatory cytokines of IL-1${\beta}$, IL-6 and TNF-${\alpha}$ while ROS A inhibited the cytokines production. Since IL-1${\beta}$, IL-6 and TNF-${\alpha}$ need the transcription factors such as nuclear factor- ${\kappa}$B (NF-${\kappa}$B) and activated protein-1 (AP-1), we measured the transcription factors. ROS-A inhibited the activation of p65, p50, c-Rel subunits of NF-${\kappa}$B and AP-1 transcription factors. These findings indicate that ROS A from the stem bark of E. alatus inhibits proliferation in metastatic cancer cells. It was suggested that stem barks of E. alatus could be suitable for anti-cancer drugs.

  • PDF

Down-regulation of T Helper 2-Associated Cytokine Expression by Fisetin (Fisetin에 의한 비만세포 Th2 사이토카인 발현 하향 조절)

  • Yoon, Soo Jeong;Pyo, Myoung Yun
    • YAKHAK HOEJI
    • /
    • v.56 no.5
    • /
    • pp.326-332
    • /
    • 2012
  • Mast cells play pivotal pathologic roles in allergic disease involving T helper 2 (Th2) cytokine such as interleukin (IL)-4 and IL-13. Fisetin has been known as an anti-allergic agent having inhibitory effects on the IL-4 and IL-13 gene expressions in inflammatory immune cells. However, its molecular mechanisms for suppressive effects of fisetin on IL-4 and IL-13 in activated mast cells have been incompletely elucidated. In this study we found that fisetin significantly inhibited the phorbol 12-myristate 13-acetate (PMA) and ionomycin (PI)-induced production of IL-4 and IL-13 in mast cells. The levels of mRNA were dramatically decreased by fisetin, indicating the suppression might be regulated at the transcriptional levels. Western blot analysis of the nuclear expression of various transcription factors involved in the promoter activation indicated that suppression of c-Fos was prominent together with significant down-regulation of nuclear factor of activated T-cell (NF-AT) and NF-${\kappa}B$, but not c-Jun. Furthermore, the nuclear expression of GATA binding protein 2 (GATA-2) transcription factor was significantly down-regulated by fisetin. Taken together, our study indicated fisetin has suppressive effects on IL-4 and IL-13 gene expression through the regulation of selective transcription factors.