Browse > Article
http://dx.doi.org/10.1016/j.jgr.2017.06.003

AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract  

Han, Sang Yun (Department of Biotechnology and Bioengineering, Sungkyunkwan University)
Kim, Juewon (Vital Beautie Research Division, Amorepacific Research and Development Center)
Kim, Eunji (Department of Biotechnology and Bioengineering, Sungkyunkwan University)
Kim, Su Hwan (Vital Beautie Research Division, Amorepacific Research and Development Center)
Seo, Dae Bang (Vital Beautie Research Division, Amorepacific Research and Development Center)
Kim, Jong-Hoon (Department of Physiology, College of Veterinary Medicine, Chonbuk National University)
Shin, Song Seok (Vital Beautie Research Division, Amorepacific Research and Development Center)
Cho, Jae Youl (Department of Biotechnology and Bioengineering, Sungkyunkwan University)
Publication Information
Journal of Ginseng Research / v.42, no.4, 2018 , pp. 496-503 More about this Journal
Abstract
Background: Korean ginseng (Panax ginseng) plays an anti-inflammatory role in a variety of inflammatory diseases such as gastritis, hepatitis, and colitis. However, inflammation-regulatory activity of the calyx of the P. ginseng berry has not been thoroughly evaluated. To understand whether the calyx portion of the P. ginseng berry is able to ameliorate inflammatory processes, an ethanolic extract of P. ginseng berry calyx (Pg-C-EE) was prepared, and lipopolysaccharide-activated macrophages and HEK293 cells transfected with inflammation-regulatory proteins were used to test the anti-inflammatory action of Pg-C-EE. Methods: The ginsenoside contents of Pg-C-EE were analyzed by HPLC. Suppressive activity of Pg-C-EE on NO production, inflammatory gene expression, transcriptional activation, and inflammation signaling events were examined using the Griess assay, reverse transcription-polymerization chain reaction, luciferase activity reporter gene assay, and immunoblotting analysis. Results: Pg-C-EE reduced NO production and diminished mRNA expression of inflammatory genes such as cyclooxygenase-2, inducible NO synthase, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. This extract suppressed luciferase activity induced only by nuclear factor-${\kappa}B$. Interestingly, immunoblotting analysis results demonstrated that Pg-C-EE reduced the activities of protein kinase B (AKT)1 and AKT2. Conclusion: These results suggest that Pg-C-EE may have nuclear-factor-${\kappa}B$-targeted anti-inflammatory properties through suppression of AKT. The calyx of the P. ginseng berry is an underused part of the ginseng plant, and development of calyx-derived extracts may be useful for treatment of inflammatory diseases.
Keywords
AKT; anti-inflammatory activity; calyx of berry; nuclear factor-${\kappa}B$; Panax ginseng;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zou J, Guo P, Lv N, Huang D. Lipopolysaccharide-induced tumor necrosis factor-${\alpha}$ factor enhances inflammation and is associated with cancer (Review). Mol Med Rep 2015;12:6399-404.   DOI
2 Ferrero-Miliani L, Nielsen O, Andersen P, Girardin S. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-$1{\beta}$ generation. Clin Exp Immunol 2007;147:227-35.
3 Roberts-Thomson IC, Fon J, Uylaki W, Cummins AG, Barry S. Cells, cytokines and inflammatory bowel disease: a clinical perspective. Expert Rev Gastroenterol Hepatol 2011;5:703-16.   DOI
4 Mahla RS, Reddy CM, Prasad D, Kumar H. Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vaccine biology. Front Immunol 2013;4:248.
5 Jeong D, Yi YS, Sung GH, Yang WS, Park JG, Yoon K, Yoon DH, Song C, Lee Y, Rhee MH. Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract. J Ethnopharmacol 2014;152:487-96.   DOI
6 Vo HT, Cho JY, Choi YE, Choi YS, Jeong YH. Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1. J Ginseng Res 2015;39:304-13.   DOI
7 Park JG, Son YJ, Aravinthan A, Kim JH, Cho JY. Korean Red Ginseng water extract arrests growth of xenografted lymphoma cells. J Ginseng Res 2016;40:431-6.   DOI
8 Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J Ethnopharmacol 2006;103:208-16.   DOI
9 Park JG, Kang W-S, Park KT, Park DJ, Aravinthan A, Kim J-H, Cho JY. Anticancer effect of joboksansam, Korean wild ginseng germinated from bird feces. J Ginseng Res 2016;40:304-8.   DOI
10 Shen T, Lee JH, Park MH, Lee YG, Rho HS, Kwak YS, Rhee MH, Park YC, Cho JY. Ginsenoside Rp 1, a ginsenoside derivative, blocks promoter activation of iNOS and Cox-2 genes by suppression of an $IKK{\beta}$-mediated $NF-{\kappa}B$ pathway in HEK293 cells. J Ginseng Res 2011;35:200-8.   DOI
11 Rajaram MV, Ganesan LP, Parsa KV, Butchar JP, Gunn JS, Tridandapani S. Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J Immunol 2006;177:6317-24.   DOI
12 Kuuliala K, Kuuliala A, Hamalainen M, Koivuniemi R, Kautiainen H, Moilanen E, Repo H, LeirisaloeRepo M. Impaired Akt phosphorylation in monocytes of patients with rheumatoid arthritis. Scand J Immunol 2017;85:155-61.   DOI
13 Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012;2012:512926.
14 Ribeiro-Gomes F, Silva M, Dosreis G. Neutrophils, apoptosis and phagocytic clearance: an innate sequence of cellular responses regulating intramacrophagic parasite infections. Parasitology 2006;132:S61-8.   DOI
15 Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2016;17:97-111.   DOI
16 Fukata M, Abreu MT. Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol 2009;9:680-7.   DOI
17 Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499-511.   DOI
18 O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors redefining innate immunity. Nat Rev Immunol 2013;13:453-60.   DOI
19 Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm 2012;2012:979105.
20 Jeon JW, Park BC, Jung JG, Jang YS, Shin EC, Park YW. The soluble form of the cellular prion protein enhances phagocytic activity and cytokine production by human monocytes via activation of ERK and $NF-{\kappa}B$. Immune Netw 2013;13:148-56.   DOI
21 Kang DH, Kang SW. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol Ther 2013;21:89-96.   DOI
22 Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014;2014:561459.
23 Kopf M, Bachmann MF, Marsland BJ. Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov 2010;9:703-18.   DOI
24 Tang B, Tang F, Wang Z, Qi G, Liang X, Li B, Yuan S, Liu J, Yu S, He S. Upregulation of $akt/NF-{\kappa}B-regulated$ inflammation and akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int J Nanomedicine 2016;11:6401-20.   DOI
25 Kumar S, Patel R, Moore S, Crawford DK, Suwanna N, Mangiardi M, Tiwari-Woodruff SK. Estrogen receptor ${\beta}$ ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 2013;56:131-44.   DOI
26 Ogawa A, Firth AL, Ariyasu S, Yamadori I, Matsubara H, Song S, Fraidenburg DR, Yuan JXJ. Thrombin-mediated activation of Akt signaling contributes to pulmonary vascular remodeling in pulmonary hypertension. Physiol Rep 2013;1:e00190.   DOI
27 Mitra AD, Raychaudhuri SP, Abria CJ, Mitra A, Wright R, Ray R, Kundu-Raychaudhuri S. $1{\alpha}$, 25-Dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent for psoriasis. J Invest Dermatol 2013;133:1556-64.   DOI
28 Luo Y, Sun G, Dong X, Wang M, Qin M, Yu Y, Sun X. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PloS One 2015;10:e0120259.   DOI
29 Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. $NF-{\kappa}B$ activation by tumour necrosis factor requires the Akt serineethreonine kinase. Nature 1999;401:82-5.   DOI
30 Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). Int J Mol Med 2016;39:253-60.
31 Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 2007;404:15-21.   DOI
32 Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J. Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chin Med 2012;7:2.   DOI
33 Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014;1843:2563-82.   DOI
34 Chiurchiu V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011;15:2605-41.   DOI
35 Przemyslaw L, Boguslaw HA, Elzbieta S, Malgorzata SM. ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis. BMB Rep 2013;46:139-50.   DOI
36 Blumenthal M. Asian ginseng: potential therapeutic uses. Adv Nurse Pract 2001;9:26-8.
37 Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7.   DOI
38 Helmes S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
39 Hu SY.A contribution to our knowledge of ginseng.AmJ ChinMed 1977;5:1-23.
40 Attele A, Wu J, Yuan C. Multiple pharmacological effects of ginseng. Biochem Pharmacol 1999;58:1685-93.   DOI
41 Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002;51:1851-8.   DOI
42 Lee TK, Johnke RM, Allison RR, O'Brien KF, Dobbs LJ. Radioprotective potential of ginseng. Mutagenesis 2005;20:237-43.   DOI
43 Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 2004;812:119-33.   DOI
44 Wang D, Koh HL, Hong Y, Zhu HT, Xu M, Zhang YJ, Yang CR. Chemical and morphological variations of Panax notoginseng and their relationship. Phytochemistry 2013;93:88-95.   DOI
45 Kim J-H. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 2012;36:16-26.   DOI
46 Kim EH, Son RH, Myoung HJ, MarWC, Kim WK, Nam KW. The inhibitory effect of baicalin on the short-term food intake in C57BL/6J mice. Biomol Ther 2010;18:171-7.   DOI
47 Kim MY, Yoo BC, Cho JY. Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line. J Ginseng Res 2014;38:251-5.   DOI
48 Yang Y, Yang WS, Yu T, Sung GH, Park KW, Yoon K, Son YJ, Hwang H, Kwak YS, Lee CM. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. J Ethnopharmacol 2014;154:218-28.   DOI
49 Yang Y, Lee J, Rhee MH, Yu T, Baek KS, Sung NY, Kim Y, Yoon K, Kim JH, Kwak YS. Molecular mechanism of protopanaxadiol saponin fractionmediated anti-inflammatory actions. J Ginseng Res 2015;39:61-8.   DOI
50 Hossen MJ, Jeon SH, Kim SC, Kim JH, Jeong D, Sung NY, Yang S, Baek KS, Yoon DH, Song WO, et al. In vitro and in vivo anti-inflammatory activity of Phyllanthus acidus methanolic extract. J Ethnopharmacol 2015;168:217-28.   DOI
51 Park JG, Son YJ, Kim MY, Cho JY. Syk and IRAK1 contribute to immunopharmacological activities of anthraquinone-2-carboxlic acid. Molecules 2016;21:E809.   DOI
52 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982;126:131-8.   DOI