• 제목/요약/키워드: Inflammatory mediators

검색결과 839건 처리시간 0.034초

RBL-2H3 비만세포에서 유백피 에탄올 추출물의 알레르기 반응 개선에 대한 효과 (Effect of Ullmus macrocarpa Hance Ethanol extract (Ulmus) on Improvement of allergic responses in RBL-2H3 mast Cells)

  • 도현주;오태우
    • 대한한의학방제학회지
    • /
    • 제29권4호
    • /
    • pp.191-203
    • /
    • 2021
  • Objectives : In this study, we investigate the anti-allergic effects of Ullmus macrocarpa Hance (Ulmus) on RBL-2H3 mast cell (basophilic leukemia cell line), which are mediated by FcεRIs. Methods : We evaluated the effect of the ethanol extract of Ulmus on the allergic inflammatory response in IgE-antigen-mediated RBL-2H3 cells. Cell toxicity was determined by MTT assay and the markers of degranulation such as beta-hexosaminidase, histamine, PGD2, TNF-α, IL-4, IL-6 production of inflammatory mediators and FcεRI-mediated protein expression by western blot. Results : Ulmus inhibited degranulation and production of allergic mediators (e.g., TNF-α, IL-4, and IL-6) in them. Ulmus reduced histamine levels, expression of FcεRI signaling-related genes such as Lyn, Syk, and Fyn, and extracellular signal-regulated kinase phosphorylation in mast cells. Also, Ulmus reduced PGD2 release and cyclooxygenase-2 expression, and cytosolic phospholipase A2 phosphorylation in FcεRI-mediated RBL-2H3 mast cells. Conclusions : These results indicate that Ulmus exhibits anti-allergic activity through inhibition of degranulation and inflammatory mediators and cytokine release. These findings suggest that Ulmus may have potential as a prophylactic and therapeutic agent for the treatment of various allergic diseases.

Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders

  • Han, Yong-Hyun;Lee, Kyeongjin;Saha, Abhirup;Han, Juhyeong;Choi, Haena;Noh, Minsoo;Lee, Yun-Hee;Lee, Mi-Ock
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.455-464
    • /
    • 2021
  • Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.

Acacia Honey Exerts Anti-Inflammatory Activity through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.97-97
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B-{\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

  • PDF

Sesquiterpene Derivatives Isolated from Cyperus rotundus L. Inhibit Inflammatory Signaling Mediated by NF-${\kappa}B$

  • Khan, Salman;Choi, Ran-Joo;Lee, Dong-Ung;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • 제17권3호
    • /
    • pp.250-255
    • /
    • 2011
  • The immune system is finely balanced by the activities of pro-inflammatory and anti-inflammatory mediators or cytokines. Unregulated activities of these mediators can lead to the development of various inflammatory diseases. A variety of safe and effective anti-inflammatory agents are available with many more drugs under development. Of the natural compounds, the sesquiterpenes (nootkatone, ${\alpha}$-cyperone, valencene and ${\alpha}$-selinene) isolated from C. rotundus L. have received much attention because of their potential antiinflammatory effects. However, limited studies have been reported regarding the influence of sesquiterpene structure on anti-inflammatory activity. In the present study, the anti-inflammatory potential of four structurally divergent sesquiterpenes was evaluated in lipopolysaccaride (LPS)-stimulated RAW 264.7 cells, murine macrophages. Among the four sesquiterpenes, ${\alpha}$-cyperone and nootkatone, showed stronger anti-inflammatory and a potent NF-${\kappa}B$ inhibitory effect on LPS-stimulated RAW 264.7 cells. Molecular analysis revealed that various inflammatory enzymes (iNOS and COX-2) were reduced significantly and this correlated with downregulation of the NF-${\kappa}B$ signaling pathway. Additionally, electrophoretic mobility shift assays (EMSA) elucidated that nootkatone and ${\alpha}$-cyperone dramatically suppressed LPS-induced NF-${\kappa}B$-DNA binding activity using 32Plabeled NF-${\kappa}B$ probe. Hence, our data suggest that ${\alpha}$-cyperone and nootkatone are potential therapeutic agents for inflammatory diseases.

Anti-Inflammatory Activity of Acacia Honey through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Son, Kun Ho;Jeong, Hyung Jin;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회지
    • /
    • 제31권6호
    • /
    • pp.612-621
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B$-${\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

불로초의 β-Glucan에 의한 Dectin-1 발현 유도와 세포 내 신호전달 (Induction of Dectin-1 Expression and Intracellular Signal Transduction by β-Glucan of Ganoderma lucidum)

  • 유한욱;김하원
    • 한국균학회지
    • /
    • 제46권2호
    • /
    • pp.161-176
    • /
    • 2018
  • 진균류 유래의 ${\beta}$-glucan은 pathogen-associated molecular patterns의 일종이기도 하며 면역촉진과 항암작용을 나타냄이 알려져 있지만 세포 내 신호전달에 관해서는 알려진 바가 많지 않다. 대식세포주인 RAW264.7 세포에 불로초에서 추출한 ${\beta}$-glucan을 처리하였을 때 세포막에서는 덱틴-1, toll-like receptor 2, 4, 6의 발현이 증가되었으며, 세포 내에서는 macrophage inflammatory protein (MIP)-1a, MIP-$1{\beta}$, MIP-$1{\gamma}$, IL-$1{\beta}$ 그리고 tumor necrosis factor (TNF)-${\alpha}$의 발현이 증가되었다. 또한 대식세포주에 불로초의 ${\beta}$-glucan과 PI3K 또는 MEK1/MEK2 억제제를 각각 처리하였을 때에 세포 내의 MIP-1a, MIP-$1{\beta}$, MIP-$1{\gamma}$, interleukin-$1{\beta}$, TNF-${\alpha}$의 발현이 감소되었다. 따라서 불로초의 ${\beta}$-glucan은 대식세포에서 MyD88의 경로인 PI3K/Akt를 경유할 뿐만 아니라 MEK 경로를 활성화시킴으로써 다양한 면역조절작용이 가능한 것으로 여겨진다.

Oxidative Stress, Chromatin Remodeling and Gene Transcription in Inflammation and Chronic Lung Diseases

  • Rahman, Irfan
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.95-109
    • /
    • 2003
  • Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. The sources of the increased oxidative stress in patients with chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) derive from the increased burden of inhaled oxidants, and from the increased amounts of reactive oxygen species (ROS) generated by several inflammatory, immune and various structural cells of the airways. Increased levels of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs and blood in patients with lung diseases. ROS, either directly or via the formation of lipid peroxidation products such as 4-hydroxy-2-nonenal may play a role in enhancing the inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox sensitive transcription factors such as NF-${\kappa}B$ and AP-1. Recent evidences have indicated that oxidative stress and pro-inflammatory mediators can alter nuclear histone acetylation/deacetylation allowing access for transcription factor DNA binding leading to enhanced pro-inflammatory gene expression in various lung cells. Understanding of the mechanisms of redox signaling, NF-${\kappa}B$/AP-1 regulation, the balance between histone acetylation and deacetylation and the release and expression of pro- and anti-inflammatory mediators may lead to the development of novel therapies based on the pharmacological manipulation of antioxidants in lung inflammation and injury. Antioxidants that have effective wide spectrum activity and good bioavailability, thiols or molecules which have dual antioxidant and anti-inflammatory activity, may be potential therapeutic agents which not only protect against the direct injurious effects of oxidants, but may fundamentally alter the underlying inflammatory processes which play an important role in the pathogenesis of chronic inflammatory lung diseases.

육군자탕의 정제 개발과 성분함량 및 약리효과 평가 (Development of tablets and evaluation of ingredient content and pharmacological effects of Yukgunja-tang)

  • 김명진;최혜민;유병우;홍영주;라채숙;김민주;김정옥
    • 대한본초학회지
    • /
    • 제36권1호
    • /
    • pp.67-76
    • /
    • 2021
  • Objective : Yukgunja-tang is one of the herbal prescriptions widely used for functional indigestion. In this study, we evaluated the pharmacological effect through the Yukgunja-tang formulation development. Methods : The RAW 264.7 cells were pretreated with Yukgunja-tang tablet (YGJT-T : 50, 100 and 200 ㎍/㎖) and then stimulated with lipopolysaccharide (LPS : 500 ng/㎖). Cell viability, inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) and inflammatory cytokines (IL-1β, IL-6, and TNF-α) were measured. Also, ICR mice induced acute gastritis by oral administration of 150 mM HCl in 60% ethanol. The YGJT-T (30 mg/kg) was pretreated for 3 days, and 150 mM HCl in 60% ethanol was orally administered 1 hour after the last drug treatment. Mice were sacrificed 1 hour after oral administration of 150 mM HCl in 60% ethanol. The gastric mucosa was observed, and inflammatory cytokines in the gastric tissue were measured. Results : The marker components of YGJT-T were determined by simultaneous analysis using HPLC. In RAW 264.7 cells, pretreatment of YGJT-T was non-toxic and inhibited the production of inflammatory mediators such as NO and PGE2 and suppressed inflammatory cytokines. In addition, pretreatment of YGJT-T improved bleeding and edema due to gastric lesions caused by acute gastritis and suppressed inflammatory cytokines. Conclusion : In summary, our results confirmed that treatment with YGJT-T has anti-inflammatory and anti-gastritis effects in vitro and in vivo. Therefore, in this study, YGJT-T could support a potential strategy for the prevention and treatment of gastritis.

산마늘추출물이 과산화지질급여 비만쥐의 지질강하, 항산화효과 및 염증매개물질의 생산에 미치는 영향 (Effects of Allium victorials Extract on Lowing Lipid, Anti-oxidation and Concentration of Inflammatory Mediators in Rats Fed High Oxidized Fat)

  • 이은
    • 한국자원식물학회지
    • /
    • 제26권2호
    • /
    • pp.227-233
    • /
    • 2013
  • 본 연구는 산마늘추출물이 과산화지질을 급여한 비만쥐의 지질강하, 항산화효과 및 염증매개물질의 생산에 미치는 영향을 검토했다. 그 결과 혈장 FFA, TG, total cholesterol 및 LDL-cholesterol 농도는 산마늘추출물 처리군 들에서 감소했으며, 혈장HDL-cholesterol 농도는 산마늘추출물 처리군 들에서 증가했다. 간장 내 total cholesterol 농도 및 TG 농도는 산마늘추출물 처리군 들에서 감소하는 경향을 나타내었다. 혈장 및 간장의 TBARS 농도는 산마늘추출물 처리군 모두가 대조군보다 낮은 경향을 보였다. 간장 GSH-Px, SOD 및 CAT활성치모두가 산마늘추출물 처리군 들에서 증가하는 경향을 보였다. 혈장 NO, Ceruloplasmin 및 ${\alpha}1$-acid glycoprotein 농도는 산마늘추출물 투여군 들이 대조군보다 낮은 경향을 나타내었다. 이와 같은 결과는 산마늘추출물에 지질강하, 항산화 및 항염증작용에 효과를 나타내는 기능성물질이 내재하고 있음을 시사한다.

Luteolin and luteolin-7-O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • 제13권6호
    • /
    • pp.473-479
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Anti-inflammatory and antioxidative activities of luteolin and luteolin-7-O-glucoside were compared in galactosamine (GalN)/lipopolysaccharide (LPS)-induced hepatitic ICR mice. MATERIALS/METHODS: Male ICR mice (6 weeks old) were divided into 4 groups: normal control, GalN/LPS, luteolin, and luteolin-7-O-glucoside groups. The latter two groups were administered luteolin or luteolin-7-O-glucoside (50 mg/kg BW) daily by gavage for 3 weeks after which hepatitis was induced by intraperitoneal injection of GalN and LPS (1 g/kg BW and $10{\mu}g/kg\;BW$, respectively). RESULTS: GalN/LPS produced acute hepatic injury by a sharp increase in serum AST, ALT, and $TNF-{\alpha}$ levels, increases that were ameliorated in the experimental groups. In addition, markedly increased expressions of cyclooxygenase (COX)-2 and its transcription factors, nuclear factor $(NF)-{\kappa}B$ and activator protein (AP)-1, were also significantly attenuated in the experimental groups. Compared to luteolin-7-O-glucoside, luteolin more potently ameliorated the levels of inflammatory mediators. Phase II enzymes levels and NF-E2 p45-related factor (Nrf)-2 activation that were decreased by GalN/LPS were increased by luteolin and luteolin-7-O-glucoside administration. In addition, compared to luteolin, luteolin-7-O-glucoside acted as a more potent inducer of changes in phase II enzymes. Liver histopathology results were consistent with the mediator and enzyme results. CONCLUSION: Luteolin and luteolin-7-O-glucoside protect against GalN/LPS-induced hepatotoxicity through the regulation of inflammatory mediators and phase II enzymes.