• Title/Summary/Keyword: Inflammatory effects

Search Result 5,266, Processing Time 0.043 seconds

Allelic Gene Interaction and Anthocyanin Biosynthesis of Purple Pericarp Trait for Yield Improvement in Black Rice (흑미의 자색종자과피 형질을 결정하는 대립유전자와 안토시아닌 생성의 상호관계)

  • Rahman, Md Mominur;Lee, Kyung Eun;Kang, Sang Gu
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.727-736
    • /
    • 2016
  • Rice (Oryza sativa L.) is one of the major cereal crops for consumption by the world’s population. Recently, various colored rice, such as white, red, brown, green, and black rice, have caught the attention of world consumers. The commercial name ‘black rice’ contains a high amount of anthocyanins in pericarp, which increases nutritional value. Moreover, anthocyanin in black rice possesses biomedical properties, including anti-oxidant, anti-cancer, and anti-inflammatory effects in humans. In genetics, black rice has a dominant PURPLE PERICARP (Prp) trait governed by two genes, Pb and Pp, which are involved in the synthesis of cyanidin-3-O-glucoside (C3G). Since the publication of a report by Nagai at 1921, the genetics and physiological studies of black rice driven by Prp traits are still unable to understand the relevant genes and their roles. However, with the increased demand for anthocyanin-rich black rice as a functional food for human health, it has become urgent to develop highyielding anthocyanin-rich varieties of rice. We explored many years in the genetics of purple pericarp trait, anthocyanin biosynthesis in pericarp during seed development, and, consequently, their products in relation to different physiological and agronomic traits. In this review, we summarized the anthocyanin biosynthesis in pericarp, emphasizing the inheritance pattern of the trait and functions of their products on different physiological and agronomic traits, including the yield of black rice.

Induction of Apoptosis by Bee Venom in A549 Human Lung Epithelial Cancer Cells through Modulation of Bcl-2 and IAP Family and Activation of Caspases (Bcl-2 및 IAP family의 발현 변화와 caspase 활성을 통한 봉독의 인체폐암세포 apoptosis 유도)

  • Woo, Hyun-Joo;Kim, Hyun-Joong;Hong, Su-Hyun;Hong, Sang-Hoon;Choi, Byung-Tae;Lee, Yong-Tae;Park, Dong-Il;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1596-1600
    • /
    • 2007
  • Bee venom is used to treat inflammatory diseases in Korean traditional medicine and has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in bee venom-induced apoptosis are still uncharacterized in human lung cancer cells. In the present study, we investigated the effects of bee venom on the apoptosis of A549 human lung epithelial cancer cells. Treatment of bee venom inhibited the cell viability and induced apoptosis in a concentration-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometry analysis. Bee venom-induced apoptosis in A549 cells was associated with a marked inhibition of anti-apoptotic Bcl-2 expression without significant changes in the levels of Bax and Bcl-xL. Bee venom treatment also inhibited the levels of IAP family members such as cIAP-1 and cIAP-2 and induced the proteolytic activation of caspase-3 and caspase-9. Although further studies are needed, the present results suggest that apoptotic signals evoked by bee vemon in A549 cancer cells may converge caspases activation through a down-regulation of Bcl-2 rather than an up-regulation of Bax. These findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of bee vemon in human cancer cells.

Research Trends of Fermented Medicinal Herbs - Based on Their Clinical Efficacy and Safety Assessment (발효한약의 최근 연구 동향 - 안전성과 유효성 기반)

  • Choi, Yun-Kyung;Sul, Jae-Uk;Park, Seoul-Ki;Yu, Sun-Nyoung;Kim, Sang-Hun;Rhee, Moon-Soo;Ahn, Soon-Cheol;Shin, Mi-Sook
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1729-1739
    • /
    • 2012
  • The aim of this study was to evaluate the clinical efficacy and safety of fermented medicinal herbs. A search of the China National Knowledge Infrastructure (CNKI), PubMed databases and Korean Journal of Oriental Medicine in 2000-2011 located 11 randomized controlled trials (RCTs) that investigated the clinical efficacy of fermented medicinal herbs. Domestic RCTs reported clinical efficacy on improvement of immune responses and clinical safety on usage of fermented medicinal herbs in subjects suffering from cerebral hemodynamics. Countries other than Chinareported studies on the cause of esophageal cancer and on local inflammatory reactions. In China, studies were reported on the effectiveness of fermented medicinal herbs on scapulohumeral periarthritis of the stasis type, chronic superficial gastritis, dysuria induced by benign prostatic hyperplasia of deficiency of kidney yang, diabetic nephropathy, essential hypertension, and benign prostate hyperplasia. These results indicate that fermented medicinal herbs have obvious clinical effects in some diseases and no adverse reactions. Therefore, we need to initiate more fermentation research with useful bacteria, fungi, and mushrooms to produce fermented medicinal herbs. Both governments and research authorities should focus on research involving fermentation of medicinal herbs.

The Anti-Diabetic Effects and Nephroprotective Effect of Black Ginseng Prosapogenin Extract in Streptozotocin-Induced Mice (흑삼의 프로사포게닌 추출물이 Streptozotocin으로 유도된 당뇨 쥐에 대한 항당뇨 효과 및 신장보호 효과)

  • Kong, Ryong;Shon, Mi Yae;Seo, Yun Soo;Kang, Ok Hwa;Zhou, Tian;Kim, Do Yeon;Choi, Sung Hoon;Kwon, Dong Yeul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.2
    • /
    • pp.115-120
    • /
    • 2016
  • Background: This study examined the hypoglycemic and kidney protective effect of black ginseng in streptozotocin-induced diabetic mice. Methods and Results: Diabetes was induced by treating mice with streptozotocin (STZ) for four weeks. In vivo studies were performed in order to investigate the hypoglycemic effect of the black ginseng prosapogenin (GBG05-FF) extract. The body weight and blood glucose level were measured. Moreover, after the mice were sacrificed, the kidneys were isolated and histological changes were observed with hematoxylin and eosin staining. Blood urea nitrogen and creatinine levels were also measured. The results showed that administration of black ginseng increased body weight. Compared to blood glucose levels in STZ mice, blood glucose levels were reduced by 48% in STZ mice supplemented with 300 mg/kg of black ginseng, and by 69% in STZ mice supplemented with 900 mg/kg. Furthermore, histopathological examination of STZ mouse kidneys revealed, changes in the kidneys, epithelial cell damages, inflammatory cell infiltration and glomerulus hypertrophy. However, a significant reduction of glomerular water droplets (indicative of glomerulus hypertrophy) was observed in the kidneys of STZ mice supplemented with black ginseng extract. Conclusions: These results suggest that black prosapogenin (GBG05-FF) ginseng extract has a significant hypoglycemic effect and can be used as an anti-diabetic substance and renal protective agents as part of dietary supplements or novel drugs.

Healing Effects of Ginsenoside Rg1 on Experimental Open Wound in Rat (흰쥐의 외과적 창상에 대한 Ginsenoside Rg1의 치료효과)

  • Lim, Ae-Kyoung;Kim, Kil-Soo;Park, Su-Jung;Hong, Joo-Heon;Choi, Hyang-Ja;Kim, Dae-Ik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1452-1458
    • /
    • 2010
  • This study was performed to investigate the effect of ginsenoside Rg1 treatment on wound healing using SD rats by generating four full-thickness skin wounds on the dorsum. In the Rg1-treated groups (5,000 and 10,000 ppm), area of wounds and macroscopic inflammatory signs were significantly decreased compared to control group throughout the experimental period in a concentration dependent manner. Histological appearance after 20 days of treatment with Rg1 revealed the formation of epithelial layer, hair follicles and progressive angiogenesis and an increase in collagen and granulation as compared to control group. Rg1 treatment resulted in the increased expression of the vascular endothelial growth factor (VEGF) mRNA and reduced expression of transforming growth factor beta (TGF-$\beta$) mRNA in wounded skin compared to control group. The expression levels of VEGF and TGF-$\beta$ mRNA in the Rg1-treated groups were similar to those of Fucidin(R) ointment-treated group. These results suggested that Rg1 should be helpful for the promotion of wound healing.

In Vitro and in Vivo Wound Healing Properties of Plasma and Serum from Crocodylus siamensis Blood

  • Jangpromma, Nisachon;Preecharram, Sutthidech;Srilert, Thanawan;Maijaroen, Surachai;Mahakunakorn, Pramote;Nualkaew, Natsajee;Daduang, Sakda;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1140-1147
    • /
    • 2016
  • The plasma and serum of Crocodylus siamensis have previously been reported to exhibit potent antimicrobial, antioxidant, and anti-inflammatory activities. During wound healing, these biological properties play a crucial role for supporting the formation of new tissue around the injured skin in the recovery process. Thus, this study aimed to evaluate the wound healing properties of C. siamensis plasma and serum. The collected data demonstrate that crocodile plasma and serum were able to activate in vitro proliferation and migration of HaCaT, a human keratinocyte cell line, which represents an essential phase in the wound healing process. With respect to investigating cell migration, a scratch wound experiment was performed which revealed the ability of plasma and serum to decrease the gap of wounds in a dose-dependent manner. Consistent with the in vitro results, remarkably enhanced wound repair was also observed in a mouse excisional skin wound model after treatment with plasma or serum. The effects of C. siamensis plasma and serum on wound healing were further elucidated by treating wound infections by Staphylococcus aureus ATCC 25923 on mice skin coupled with a histological method. The results indicate that crocodile plasma and serum promote the prevention of wound infection and boost the re-epithelialization necessary for the formation of new skin. Therefore, this work represents the first study to demonstrate the efficiency of C. siamensis plasma and serum with respect to their wound healing properties and strongly supports the utilization of C. siamensis plasma and serum as therapeutic products for injured skin treatment.

Dexamethasone Induces $Fc{\gamma}RIIb$ Expression in RBL-2H3 Cells

  • Silwal, Prashanta;Lee, Mi-Nam;Lee, Choong-Jae;Hong, Jang-Hee;NamGung, Uk;Lee, Zee-Won;Kim, Jinhyun;Lim, Kyu;Kweon, Gi Ryang;Park, Jong Il;Park, Seung Kiel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.393-398
    • /
    • 2012
  • Mast cells are involved in allergic responses, protection against pathogens and autoimmune diseases. Dexamethasone (Dex) and other glucocorticoids suppress $Fc{\varepsilon}RI$-mediated release of inflammatory mediators from mast cells. The inhibition mechanisms were mainly investigated on the downstream signaling of Fc receptor activations. Here, we addressed the effects of Dex on Fc receptor expressions in rat mast cell line RBL-2H3. We measured mRNA levels of Fc receptors by real-time PCR. As expected, Dex decreased the mRNA levels of activating Fc receptor for IgE ($Fc{\varepsilon}R$) I and increased the mRNA levels of the inhibitory Fc receptor for IgG $Fc{\gamma}RIIb$. Interestingly, Dex stimulated transcriptions of other activating receptors such as Fc receptors for IgG ($Fc{\gamma}R$) I and $Fc{\gamma}RIII$. To investigate the mechanisms underlying transcriptional regulation, we employed a transcription inhibitor actinomycin D and a translation inhibitor cycloheximide. The inhibition of protein synthesis without Dex treatment enhanced $Fc{\gamma}RI$ and $Fc{\gamma}RIII$ mRNA levels potently, while $Fc{\varepsilon}RI$ and $Fc{\gamma}RIIb$ were minimally affected. Next, we examined expressions of the Fc receptors on cell surfaces by the flow cytometric method. Only $Fc{\gamma}RIIb$ protein expression was significantly enhanced by Dex treatment, while $Fc{\gamma}RI$, $Fc{\gamma}RIII$ and $Fc{\varepsilon}RI$ expression levels were marginally changed. Our data showed, for the first time, that Dex regulates Fc receptor expressions resulting in augmentation of the inhibitory receptor $Fc{\gamma}RIIb$.

Effects of Porphyromonas endodontalis lipopolysaccharide on IL-1$\beta$, TNF-$\alpha$ and IL-1ra production by human polymorphonuclear leukocytes (Porphyromonas endodontalis 의 lipopolysaccharide가 다형핵백혈구의 IL-1$\beta$, TNF-$\alpha$, IL-1ra 생성에 미치는 영향에 대한 연구)

  • Hyun-Jung Ko;Seung-Ho Baek;Sung-Sam Lim
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.6
    • /
    • pp.451-463
    • /
    • 2001
  • 목적 - Inflammatory cytokine으로 알려진 interleukin 1$\beta$, tumor necrosis factor $\alpha$는 치수 및 치근단질환에서 주요한 역할을 하며, 골흡수를 자극하고 골형성을 방해하는 것으로 알려져 왔다. 이들 cytokine은 주로 단핵세포/대식세포가 형성하는 것으로 알려져 왔으나 최근 연구에 의하면, PMN도 또한 이 런 cytokine들을 형성할 수 있다는 것이 보고되었다. 오랫동안 염증반응이나 면역반응에서 PMN의 역할이 주로 포식작용 을 통해 병원균을 제거하는 것이라고만 생각되어져 왔던 것을 생각하면, 새로운 발견이라 할 수 있다. 또, PMN은 IL-1ra도 생성하는 것으로 보고되었는데, IL-1ra란 IL-1의 생물학적 작용을 방해하는 인자이므로, IL-1과 밀접한 관련을 가지는 질환의 발전에 있어서 IL-1과 IL-1ra의 balance가 매우 중요한 역할을 할 것으로 생각된다 즉, IL-1ra는 IL-1$\beta$의 proinflammatory effect를 제한할 수 있는 negative feedback mechanism이라고 할 수 있다. 이 연구의 목적은 치수 및 치근단 조직의 감염에 있어서 주요 원인균인 Porphyromonas endodontalis의 LPS가 PMN의 IL-1$\beta$, TNF-$\alpha$, IL-1ra생성에 미치는 영향을 단백질과 mRNA 수준에서 관찰하는 것이다. 잘 알려진 non-oral bacterium인 E. coli의 LPS를 positive control로 사용하였으며, IL-1ra가 IL-1$\beta$의 생물학적 작용을 방해하는 작용을 관찰하기 위해, IL-1의 biological assay도 시행하였다. 방법 - P. endodontalis ATCC 35406을 혐기성 조건에서 배양하고, hot phenol-water extraction의 방법으로 LPS를 추출(crude LPS)한 후, 제조회사로부터 구입한 E. coli의 crude LPS와 함께 정제하였다. 건강한 자원자들을 대상으로 말초혈액을 채취한 후 dextran sedimentaion을 거쳐 Lymphoprep을 이용하여 PMN층을 분리하였다. 얻어진 세포들은 RPMI 1640 (supplemented with fetal bovine serum antibiotics)에 5$\times$$10^{6}$cells/ml이 되도록 resuspend시킨 후 각기 다른 농도 (0, 0.01, 0.1, 1 and 10$\mu$g/ml)의 LPS를 처리하여, 각기 다른 시간(Northern blot : 1, 2, 4시간 ELISA : 2, 6, 12, 18시간)동안 37$^{\circ}C$ in 5% $CO_2$ 의 조건으로 배양하였다. 상층액은 -7$0^{\circ}C$에 보관하였다가 추후에 ELISA를 이용한 단백질 농도 측정과 IL-1 biological assay에 사용되어졌으며, 배양된 세포로부터 RNA를 추출하여 Northern hybridization을 통해 mRNA expression을 관찰하였다. (중략)

  • PDF

Germ Line Transformation of the Silkworm, Bombyx mori L. with a piggyBac Vector Harboring the Human Lactoferrin Gene (락토페린 유전자도입 piggyBac 벡터에 의한 누에 형질전환)

  • Kim, Yong-Soon;Sohn, Bong-Hee;Kim, Kee-Young;Jung, I-Yeon;Kim, Mi-Ja;Kang, Pil-Don
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • Lactoferrin, an ion-binding 80-kDa glycoprotein, has been suggested to have many biologic activities, such as facilitating ion absorption and having antimicrobial and anti-inflammatory effects. Several of these activities are likely to only be facilitated by human lactoferrin because they depend on the binding of human lactoferrin to specific receptor. To produce recombinant human lactoferrin to animal foods using transgenic silkworm, Bombyx mori L, we have cloned and sequenced the cDNA encoding for a human lactoferrin (HLf) from the mRNA in mammary tumor line (GI-101). As a result, the 2.5-kb fragment of HLf gene was cloned with pGEM-T vector and then this fragment was sequenced. In the nucleotide sequence analysis, single open reading frame of the 2,136-bp encoding for a polypeptide of 712 amino acid residues was detected. On the other hand, we constructed a recombinant plasmid(pPT-HLf), containing human lactoferrin gene for germ line transformation of the silkworm using a piggyBac transposon-derived vector. A nonautonomous helper plasmid encodes the piggyBac transposase. Approximately 6.7% of individuals in the G0 silkworms expressed green fluorescent protein (GFP). PCR analyses of GFP-positive silkworms (G0 and G1) revealed that independent insertions occurred frequently. Furthermore, Western blot analysis showed that the recombinant HLf expressed in hemolymph has the same molecular weight (80 kDa) as a native protein. On the basis of these experiments, expression of HLf in next generation of transgenic silkworm is now in process.

Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract (강황 추출물의 비알코올성 지방간 질환 개선 효과)

  • Lee, Young Seob;Lee, Dae Young;Kwon, Dong Yeul;Kang, Ok Hwa
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.