• 제목/요약/키워드: Inflammatory

검색결과 10,720건 처리시간 0.033초

Anti-Inflammatory Herbal Extracts and Their Drug Discovery Perspective in Atopic Dermatitis

  • Jae-Won Lee;Eun-Nam Kim;Gil-Saeng Jeong
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.25-37
    • /
    • 2024
  • Atopic dermatitis (AD) is an allergic disorder characterized by skin inflammation. It is well known that the activation of various inflammatory cells and the generation of inflammatory molecules are closely linked to the development of AD. There is accumulating evidence demonstrating the beneficial effects of herbal extracts (HEs) on the regulation of inflammatory response in both in vitro and in vivo studies of AD. This review summarizes the anti-atopic effects of HEs and its associated underlying mechanisms, with a brief introduction of in vitro and in vivo experiment models of AD based on previous and recent studies. Thus, this review confirms the utility of HEs for AD therapy.

Oxidative Stress, Chromatin Remodeling and Gene Transcription in Inflammation and Chronic Lung Diseases

  • Rahman, Irfan
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.95-109
    • /
    • 2003
  • Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. The sources of the increased oxidative stress in patients with chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) derive from the increased burden of inhaled oxidants, and from the increased amounts of reactive oxygen species (ROS) generated by several inflammatory, immune and various structural cells of the airways. Increased levels of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs and blood in patients with lung diseases. ROS, either directly or via the formation of lipid peroxidation products such as 4-hydroxy-2-nonenal may play a role in enhancing the inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox sensitive transcription factors such as NF-${\kappa}B$ and AP-1. Recent evidences have indicated that oxidative stress and pro-inflammatory mediators can alter nuclear histone acetylation/deacetylation allowing access for transcription factor DNA binding leading to enhanced pro-inflammatory gene expression in various lung cells. Understanding of the mechanisms of redox signaling, NF-${\kappa}B$/AP-1 regulation, the balance between histone acetylation and deacetylation and the release and expression of pro- and anti-inflammatory mediators may lead to the development of novel therapies based on the pharmacological manipulation of antioxidants in lung inflammation and injury. Antioxidants that have effective wide spectrum activity and good bioavailability, thiols or molecules which have dual antioxidant and anti-inflammatory activity, may be potential therapeutic agents which not only protect against the direct injurious effects of oxidants, but may fundamentally alter the underlying inflammatory processes which play an important role in the pathogenesis of chronic inflammatory lung diseases.

Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과 (Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways)

  • 윤형선
    • 한국식품과학회지
    • /
    • 제39권5호
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

급성염증유발 동물모델에서 포공영(蒲公英)의 염증억제 효과 (Anti-inflammatory Activity of Dandelion in Mice)

  • 함대현;서봉준;한동오;박재현;정은택;이혜정;고윤정;최희돈
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.810-814
    • /
    • 2008
  • Most inflammatory disorders are usually treated using anti-inflammatory drugs including non-steroidal anti-inflammatory drugs (NSAID) and steroidal anti-inflammatory drugs (SAID). Prolonged uses of NSAIDs and SAIDs may frequently cause adverse side-effects such as nausea, vomiting, diarrhea, constipation, decreased appetite, kidney and liver failure, ulcers, and prolonged bleeding after an injury or surgery. Thus, it is necessarily required to develop a new anti-inflammatory drug with little side-effects. Dandelion (Taraxacum officinale) possesses the therapeutic abilities to eliminate body heat and toxins and to remove swelling and inflammation. In order to verify the anti-inflammatory activity of dandelion, TPA(12-O-tetra decanoylphorbol-acetate)-induced or croton oil-induced acute edema was developed in the mouse ears, and dandelion extract dissolved in acetone was applied to both sides of inflamed ears. It was found that dandelion could significantly reduce the ear swelling, compared to that of non-treated control. In the case of $20{\mu}{\ell}$ application of $100mg/m{\ell}$ dandelion solution (DA-100), its anti-inflammatory effect was comparable to that of indomethacin, a non - steroidal anti-anflammatory drug. Taken together, it could be concluded that topically applied dandelion extract exhibited its potentials as a new drug candidate with an effective anti-inflammatory activity.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제9권1호
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

인간 뇌 성상세포에서 진간식풍탕의 사이토카인 조절 효과 (The Regulatory Effect of Zhengan Xifeng-tang on Pro-inflammatory Cytokine in Human Brain Astrocytes)

  • 유연희;이성근;이기상
    • 동의생리병리학회지
    • /
    • 제18권2호
    • /
    • pp.490-495
    • /
    • 2004
  • Brain cells produce cytokines and chemokines during the inflammatory process of many neuronal diseases both in animal models and in patients. Inflammatory cytokines are the main responsible for the onset of inflammatory cascade. During the past decade, a growing corpus of evidence has indicated an important role of these cytokines in the development of brain damage. ZhenganXifeng-tang (ZGXFT) is a Korean herbal prescription, which has been successfully applied for the treatment of various neuronal diseases. However, its effect in experimental models remains unknown. Astrocytes are predominant neuroglial cells of the central nervous system and are actively involved in cytokine-mediated events in inflammatory disease. An inflammatory response associated with β-amyloid (Aβ) and interleukin (IL)-1β is responsible for the pathology of inflammation disease. To investigate the biological effect of ZGXFT, the author examined cytotoxicity, effect of cytokines (IL-6 and IL-8) secretion and expression of cyclooxygenase-2 (COX-2) on human astrocytoma cell line U373MG stimulated with IL-1β plus M fragment 25-35 (Aβ [25-35]). ZGXFT by itself had no effect on cell viability on human astrocytoma cells. The secretion of IL-6 and IL-8 was inhibited by pre-treatment with ZGXFT in human astrocytoma cells. In addition, the expression of COX-2 was induced by IL-1β plus AB[25-35] and was partially inhibited by treatment with ZGXFT. The author demonstrates the regulatory effects of inflammatory reactions by ZGXFT in human astrocytes for the first time and suggest the anti-inflammatory effect of ZGXFT may reduce and delay pathologic events of inflammatory disease.

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • 셀메드
    • /
    • 제6권4호
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

Nypa fruticans wurmb regulates the secretion level of inflammatory cytokines in vitro models.

  • Jin, Yu-Mi;Kim, Seong-Seon;Lee, Jong-Hyun;Jeon, Yong-Deok;Jin, Jong-Sik
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.128-128
    • /
    • 2018
  • Nypa fruticans wurmb (NF) has been used as traditional medicinal food in Asian countries. Especially, NF has been used for conventional medicine to treat inflammatory periodontal diseases. Previous studies have been shown that NF has large amount of useful constituents such as phenolic acids, polyphenols and flavonoids. Also, NF is known as having medicinal effects such as anti-oxidant, anti-inflammatory and cholesterol-lowering effects. NF has recently been attracted to use complementary medicinal food on inflammatory diseases in Korea. However, there are no obvious effects in inflammatory and metabolic diseases also mechanisms has been studied yet. The purpose of this study was to investigate the anti-inflammatory effects of NF and steamed-NF (SNF), which recently has been used as health food, using Human keratinocyte cell line (HaCaT) and Human mast cell line (HMC-1). The cytotoxicities of NF and SNF were measured by using MTT assays in HaCaT cells and HMC-1 cell. To evaluate anti-inflammatory effects of NF and SNF, HaCaT cells were stimulated with tumor necrosis factor $(TNF)-{\alpha}$ and Interferon $(IFN)-{\gamma}$. Also, HMC-1 cells were stimulated with phorbol-12-myristate-13-acetate (PMA) and A23187 calcium ionophore (A23187) to induce allergic inflammation. Inflammatory cytokine were measured by enzyme-linked immunosorbent assay (ELISA). In this result, the extract of NF and SNF (0.01 - 1mg/ml) did not show cytotoxicity in HaCaT cells and HMC-1 cells. In addition, the NF and SNF suppressed the production of interleukin (IL)-6 and IL-8 in HaCaT cells at highest concentration. Furthermore, the treatment of SNF significantly inhibited the secretion level of IL-8 in PMA plus A23187-stimulated HMC-1 cells compared with NF treatment group. These results suggest that the extract of NF and SNF may serve as a potential therapy for skin inflammatory diseases.

  • PDF

North American ginseng influences adipocyte-macrophage crosstalk regulation of inflammatory gene expression

  • Garbett, Jaime;Wilson, Sarah A.F.;Ralston, Jessica C.;Boer, Anna A. De;Lui, Ed M.K.;Wright, David C.;Mutch, David M.
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.141-150
    • /
    • 2016
  • Background: Adipocyte-macrophage communication plays a critical role regulating white adipose tissue (WAT) inflammatory gene expression. Because WAT inflammation contributes to the development of metabolic diseases, there is significant interest in understanding how exogenous compounds regulate the adipocyte-macrophage crosstalk. An aqueous (AQ) extract of North American (NA) ginseng (Panax quinquefolius) was previously shown to have strong inflammo-regulatory properties in adipocytes. This study examined whether different ginseng extracts influence adipocyte-macrophage crosstalk, as well as WAT inflammatory gene expression. Methods: The effects of AQ and ethanol (EtOH) ginseng extracts ($5{\mu}g/mL$) on adipocyte and macrophage inflammatory gene expression were studied in 3T3-L1 and RAW264.7 cells, respectively, using real-time reverse transcription polymerase chain reaction. Adipose tissue organ culture was also used to examine the effects of ginseng extracts on epididymal WAT (EWAT) and inguinal subcutaneous WAT (SWAT) inflammatory gene expression. Results: The AQ extract caused significant increases in the expression of common inflammatory genes (e.g., Mcp1, Ccl5, Tnf-${\alpha}$, Nos2) in both cell types. Culturing adipocytes in media from macrophages treated with the AQ extract, and vice versa, also induced inflammatory gene expression. Adipocyte Ppar-${\gamma}$ expression was reduced with the AQ extract. The AQ extract strongly induced inflammatory gene expression in EWAT, but not in SWAT. The EtOH extract had no effect on inflammatory gene expression in either both cell types or WAT. Conclusion: These findings provide important new insights into the inflammo-regulatory role of NA ginseng in WAT.