• Title/Summary/Keyword: Infiltration ratio of nutrient

Search Result 5, Processing Time 0.022 seconds

APPLICATION AND EVALUATION OF THE GLEAMS MODEL TO A CATTLE GRAZING PASTURE FIELD IN NORTH ALABAMA

  • Kang, M. S.;P. prem, P.-Prem;Yoo, K. H.;Im, Sang-Jun
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.55-68
    • /
    • 2004
  • The GLEAMS (Groundwater Loading Effects of Agricultural Management System, version 3.0) water quality model was used to predict hydrology and water quality and to evaluate the effects of soil types from a cattle-grazed pasture field of Bermuda-Rye grass rotation with poultry litter application as a fertilizer in North Alabama. The model was applied and evaluated by using four years (1999-2002) of field-measured data to compare the simulated results for the 2.71- ha Summerford watershed. $R^2$ values between observed and simulated runoff, sediment yields, TN, and TP were 0.91, 0.86, 0.95, and 0.69, respectively. EI (Efficiency Index) of these parameters were 0.86, 0.67, 0.70, and 0.48, respectively. The statistical parameters indicated that GLEAMS provided a reasonable estimation of the runoff, sediment yield, and nutrient losses at the studied watershed. The soil infiltration rates were compared with the rainfall events. Only high intensity rainfall events generated runoff from the watershed. The measured and predicted infiltration rates were higher during dry soil conditions than wet soil conditions. The ratio of runoff to precipitation was ranging from 2.2% to 8.8% with average of 4.3%. This shows that the project site had high infiltration and evapotranspiration which generated the low runoff. The ratio of runoff to precipitation according to soil types by the GLEAMS model appeared that Sa (Sequatchie fine sandy loam) soil type was higher and Wc (Waynesboro fine sandy loam, severely eroded rolling phase) soil type relatively lower than the weighted average of the soil types in the watershed. The model under-predicted runoff, sediment yields, TN, and TP in Wb (Waynesboro fine sandy loam, eroded undulating phase) and Wc soil types. General tendency of the predicted data was similar for all soil types. The model predicted the highest runoff in Sa soil type by 105% of the weighted average and the lowest runoff in Wc soil type by 87% of the weighted average

  • PDF

Study on Nutrient Balance in Paddy Field of Fluvio-Marine Deposit (하해혼성(河海混成) 논토양(土壤)의 양분수지(養分收支)에 관한 연구)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kang, Seung-Weon;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.253-263
    • /
    • 2002
  • To test for the effect of applied fertilizer and nutrients on uptake and transport for paddy rice, two paddy field trials were conducted with Dongjinbyeo in degenerated salt paddy field of Jeonbuk series from 1999 to 2000. After experiment, soil acidity, content of organic matter phosphate, silicate, potassium, calcium, and total nitrogen was increased by application of fresh cattle manure(FCM). Content of Nitrogen in soil layer leached inorganic nitrogen $NO_3$ was higher that that of $NH_4$ and was high in treatment of FCM. Content of $PO_4$ was higher in FCM than other treatments. But content of potassium was in high control. During the growth of rice plant, the amount of water consumption was 477mm. The amount of supplied nitrogen was high in treatment of no nitrogen(NN), 20% reduced application of LCU(LCU-20%), and no fertilizer. In case of phosphate, the supplied amount was more than the consumed amount with the exception of treatment "no phosphate(NP) and no fertilizer(NF)". In case of potassium, the consumed amount was more than the supplied amount in all treatments. The amount of applied nitrogen in the nutrient infiltrated water was high in treatment soil test(ST), C+FCM+Si(Silicate) and the ratio of recovered nitrogen was high in 20% reduced application of LCU. The amount of applied phosphate in the nutrient infiltrated water was high in FCM and that of applied potassium was high in 20% reduced application of LCU. Nitrogen use efficiency of paddy rice was high in 20% reduced application of LCU and use efficiency of phosphate and potassium was high in C+Si(Silicate). Grain yield of rice was high in order of 20% reduced application of LCU>C+Si=C+FCM+Si>C+FCM.

Water Balance and Nutrient Losses of Paddy Fields Irrigated from a Pumping Station (양수장지구 구획논 물수지와 영양염류 유출부하)

  • Choi, Jin-Kyu;Koo, Ja-Woong;Son, Jae-Gwon;Cho, Jae-Young;Yoon, Kwang-Sik;Han, Kuk-Heon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.394-398
    • /
    • 2001
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer. When the runoff losses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 6.3 % to 8.0 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1 % to 10.7 % for nitrogen and 0.2 % for phosphorus, respectively.

  • PDF

Water and Nutrient Balance of Paddy Field Irrigated from a Pumping Station during Cropping Period (양수장 지구 광역논으로부터 영농기간 영양물질의 유출 및 물질수지)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Cho, Jae-Young;Choi, Chang-Hyun;Son, Jae-Gwon;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.1 s.15
    • /
    • pp.15-25
    • /
    • 2002
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer, When the runoff Bosses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 14.5 % to 17 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1% to 10.8% for nitrogen and 0.5% for phosphorus, respectively.

Nutrient Load Balance in Large-Scale Paddy Fields during Rice Cultivation (경지 정리된 광역 논에서 영양물질 수지와 배출 특성)

  • Kim, Min-Kyeong;Roh, Kee-An;Lee, Nam-Jong;Seo, Myung-Chul;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.164-171
    • /
    • 2005
  • The aim of this study was to evaluate the load of nutrient from paddy fields. Water management practices that can reduce eutrophication and meet water quality requirements will also be addressed. Continuous monitoring from May to September in 2002 and 2003 was conducted for water quantification and qualification at the intensive paddy fields in Icheon, Gyunggi province of Korea. Water balance and concentration variation of nitrogen and phosphorus in the water were independently compared for water quality assessment at each rice cultivation period. Rice land preparation and transplanting periods usually marked the highest water demand when compared to other periods of cultivation. Overall, a greater net irrigation ratio was observed during the transplanting period in 2002 (92.3%) and 2003 (87.2%). The measured total N loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 9.9, 41.6, 22.1, and $5.5kg\;ha^{-1}$ for 2002 and 15.8, 55.4, 17.3, and $7.5kg\;ha^{-1}$ for 2003, respectively. The measured total P loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 2.1, 13.0, 3.6, and $1.8kg\;ha^{-1}$ for 2002 and 1.6, 15.0, 5.0, and $1.2kg\;ha^{-1}$ for 2003, respectively. Daily nutrient load followed the pattern of surface drainage water, but this pattern was changed by rainfall events. The nutrient load in drainage water depends on rainfall and surface drainage water amount from the paddy fields. Interestingly, the load of total N and total P output was smaller than the input load due to the natural infiltration that Occurred during the rice cultivation period. It is concluded that the paddy fields have a beneficial effect on the ecosystem and can reduce eutrophication in the water.