• Title/Summary/Keyword: Infiltration/Inflow

Search Result 65, Processing Time 0.031 seconds

A Study on Improvement of Inflow/Infiltration Computation and Application Method in Sewer Rehabilitation Project (하수관거정비사업의 침입수/유입수 산정 및 활용방법 개선방안에 관한 연구)

  • Kim, Jong-Oh;Jeong, Dong-Gi;An, Dae-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • In this study, current sewer infiltration/Inflow(I/I) computation and application method was examined about improvement and adequacy relating to the main issues raised by the field for practitioners. The results of review about infiltration calculation method were considered to be in need of improvement at 'standards of minimum sewage calculation'. Furthermore, the results of review about I/I application method were considered to be in need of improvement at 'standards of seasonal infiltration application' and 'the relative decrease in the Annual evaluation standards'. In addition, annual I/I analysis at JC County for the four years(2009~2012) in respect of operation flow and rainfall data was conducted. The result of annual infiltration analysis, compared average daily sewage generated average infiltration rate was found in 21.95 %, infiltration by unit was found in $0.31m^3/day/cm/km$ and $0.12m^3/day/day$, respectively. The result of annual inflow analysis, average rainfall - Inflow equations was found $y=5.499{\times}$($R^2$ 0.793), and the average Inflow quantity by sewer extension was predicted to $0.66m^3/mm-km$.

A Quantitative/Qualitative Study of Infiltration/Inflow for Order Decision of Sewer pipe Maintenance (하수관거보수 순위결정을 위한 침입수/유입수량에 대한 정량/정성 분석의 실행 연구)

  • Park, Myung-Gyun;Kim, Dae-Sung;Ahn, Won-Sik;Oh, Jeong-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • This study was carried out to obtain quantities of infiltration, inflow and exfiltration on sewer pipes of three areas at a small city. From the results, the most investigated sewer pipes should be infiltrated by underground water and undetermined water. Flowrate commonly showed two peak at 6 to 8 a.m. and 6 to 9 p.m. and which may be influenced by the sewer flowrate with washing or bathing time. BOD/TN ratio of below 4.0 were inferior as compared with proper criteria 5.1. Infiltration/inflow rates of three areas were 21.7% and $0.08m^3/km$ of A, 12.4% and $0.015m^3/km$ of B, 22.4% and $0.021m^3/km$ of C, respectively. This indicates that infiltration/inflow rate of A was obviously greater than that of B and C. Also, these results show that we can conduct sewer maintenance in good order as A, C and B zone.

A Multiple Objective Mixed Integer Programming Model for Sewer Rehabilitation Planning (하수관리 정비 계획 수립을 위한 다중 목적 혼합 정수계획 모형)

  • Lee Yongdae;Kim Sheung Kown;Kim Jaehee;Kim Joonghun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.660-667
    • /
    • 2003
  • In this study, a Multiple Objective Mixed Integer Programming (MOMIP) Model is developed for sewer rehabilitation planning by considering cost, inflow/infiltration. A sewer rehabilitation planning model is required to decide the economic life of the sewer by considering trade-off between cost and inflow/infiltration. And it is required to find the optimal rehabilitation timing, according to the cost effectiveness of each sewer rehabilitation within the budget. To develop such a model, a multiple objective mixed integer programming model is formulated based on network flow optimization. The network is composed of state nodes and arcs. The state nodes represent the remaining life and the arcs represent the change of the state. The model consider multiple objectives which are cost minimization and minimization of inflow/infiltration. Using the multiple objective optimization, the trade-off between the cost and inflow/infiltration is presented to the planner so that a proper sewer rehabilitation plan can be selected.

  • PDF

A Mathematical Model for Sewer Rehabilitation Planning by Considering Inflow/infiltration (불명수를 고려한 하수관거 정비 계획 수립을 위한 수학 모형)

  • Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Jae-Hee;Kim, Joong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.547-559
    • /
    • 2003
  • In this study, a mathematical model is developed for sewer rehabilitation planning by considering cost and inflow/infiltration. A sewer rehabilitation planning model is required to decide the economic life of the sewer by considering trade-off between cost and inflow/infiltration. And it is required to find the optimal rehabilitation timing, according to the cost effectiveness of each sewer rehabilitation within the budget. To solve the problem, we formulated a multiple objective mixed integer programming(MOMIP) model based on network flow optimization. The network is composed of state nodes and arcs. The state nodes represent the remaining life and the arcs represent the change of the state. The model considers multiple objectives which are cost minimization and minimization of inflow/infiltration. Using the multiple objective optimization, the trade-off between the cost and inflow/infiltration is presented to the planner so that a proper sewer rehabilitation plan can be selected.

A Hydrologic Analysis for the Infiltration Storages Planned on Jeju-do (제주도에 계획된 침투저류지의 수문학적 분석 사례)

  • Lee, Sangho;Lee, Jungmin;Kang, Taeuk;Kang, Shinuk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1040-1048
    • /
    • 2010
  • An infiltration storage can be installed as a method of reducing runoff from catchment and increasing stream flow during the dry period by recharging groundwater. However, there is no proper model and method that can be used to design storage capacity of an infiltration storage in Korea. The purpose of the study is to evaluate capacities of infiltration storages planned on Jeju-do in Korea by modifying Storm Water Management Model (SWMM). The basic equations for the infiltration storage are same as those of the infiltration trench used in MIDUSS. Infiltration rates of the infiltration storages were first measured by double ring infiltrometers, and then the modified model was applied to evaluate adequacy for the capacities of three infiltration storages planned on Jeju-do in Korea. The application results show that the two infiltration storages with higher infiltration rates have adequate capacities to infiltrate the total water inflow to the storages. However, the other infiltration storage with lower infiltration rates has not sufficient capacity to infiltrate the total water inflow to the storage and release occurs to the downstream region. The simulation model and method applied can be used for capacity evaluation of future infiltration storages on highly pervious areas in Jeju-do.

Effect of infiltration/inflow by rainfall for sewerage facilities in the area with partially separate sewer system (불완전 분류식 하수처리구역의 강우에 의한 하수도시설의 침입수/유입수 영향 분석)

  • Shin, Jungsub;Han, Sangwon;Yook, Junsu;Lee, Chungu;Kang, Seonhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.177-190
    • /
    • 2019
  • The purpose of this study was to analyze the effects of sewerage facilities through I/I analysis by rainfall by selecting areas where storm overflow diverging chamber is remained due to the non-maintenance drainage equipment when the sewerage system was reconstructed as a separate sewer system. Research has shown that wet weather flow(WWF) increased from 106.2% to 154.8% compared to dry weather flow(DWF) in intercepting sewers, and that the WWF increased from 122.4% to 257.6% in comparison to DWF in storm overflow diverging chamber. As a result, owing to storm overflow diverging chamber of partially separate sewer system with untreated tributary of sewage treatment plant, rainfall-derived infiltration/inflow(RDII) has been analyzed 2.7 times higher than the areas without storm overflow diverging chamber. Meanwhile, infiltration quantity of this study area was relatively higher than that of other study areas. Therefore, it is necessary to reduce infiltration quantity through sewer pipe maintenance nearby river. Drainage equipment maintenance should be performed not to operate storm overflow diverging chamber in order to handle the appropriate sewage treatment plant capacity for rainfall because it is also expected that RDII due to rain will occur after maintenance. In conclusion, it is necessary to recognize aRDII(allowance of rainfall-derived infiltration/inflow) and to be reflected it on sewage treatment plant capacity because aRDII can occur even after maintenance to the complete separate sewer system.

Analysis on Correlation between Infiltration/Inflow and Defective Rate in Sewer (하수관거 침투수/유입수(I/I)와 불량률과의 상관성 분석)

  • Choi, Seung-cheol;Kwon, Young-sung;Rim, Jay-myoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.221-227
    • /
    • 2005
  • This study has suggested the base data for decision of maintenance ranking and estimation of maintenance effect in the maintenance project of sewers as based on investigation of the defective rate in the sewer through Infiltration/Inflow(I/I) and CCTV analysis. It also analyzed the correlation between I/I and defective rate of sewer. As the result of this study, (1) Defective items of sewer was found out one item each 12.97m with an average. (2) By regression analysis, I/I has high correlation with defective rate of sewer like that $R^2$ is 0.7806. (3) The first thing in the item with bad influence on the I/I was joint badness and secondary was cross connection.

Analysis of Correlation Between Defective Number of Sewer Pipes and I/I(Infiltration/Inflow) Volume (하수관거내 불량개소수와 I/I발생량간의 상관성분석)

  • Chang, Daehwan;Han, Ihnsup;Woo, Byungha;Hong, Seongjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.321-329
    • /
    • 2009
  • I/I(Infiltration/Inflow) characteristics should be studied to achieve I/I reduction which is a main object of sewer rehabilitation. However, The scientific and practical studies which are based on actual survey within the country are not thorough going enough. The earlier studies were limited because of a short research period and specific region. Thus, In this study, a formula is deduced by intensive correlation analysis between defective number and I/I volume in sewer pipe. It can be used as preliminary data when the project established for cost-effective pipe rehabilitation. The study shows that the researched region have a faulty point at every 9.3m on average and prove correlation between defective number and I/I volume in sewer pipes. Thus, this study can improve the investigation system and estimate the volume of the pipe rehabilitation, when site investigations for rehabilitation have been conducted.

Analysis on the result of I/I calculation by the exiting method and the standardized maual method (하수관거 I/I(침입수/유입수) 분석방법에 따른 산정 결과 비교 -기존 보정방법과 환경부 표준 매뉴얼에 의한 방법-)

  • An, Byung-Mo;Song, Ho-Myun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.213-221
    • /
    • 2011
  • The purpose of sewer system is to separate rain water from sewage water. Through this, it is possible to prevent the flood and preserve public water territory. For the past few years, many problems of the sewer system have been solved by the execution of sewer rehabilitation project. However, they still exist in sewer system caused by I/I, which are divided into infiltration and inflow. Infiltration means the rain water and underground water that infiltrate through breakage point on pipes, inflow means the water that flows in through misconnection on pipes. This study shows how the I/I calculation has changed according to the new standardized manual and identifies the I/I difference between the new calculation and the existing one. Through the analysis on the two calculation methods we examined the appropriacy of the new method by comparing it to the old one. The result points out that the new standardized manual is more appropriate than the old in aspect of objectivity and reproducibility(establish standardization), rationality(alteration of inflow unit).

An estimation method for the maintenance timing of the infiltration trench (침투도랑 시설의 유지관리 시점 산정방법에 관한 연구)

  • Lee, Seung Won;Cha, Sung Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • To manage the non-point source pollution and restore the water circulation, many technologies including infiltration or reservoir systems were installed in the urban area. These facilities have many problems regarding maintenance as their operation period becomes lengthier. The purpose of this study was to estimate the optimal maintenance timing through a long-term load test on the infiltration trench as one of the low impact development techniques. An infiltration trench was installed in the demonstration test facility, and stormwater was manufactured by Manual on installation and operation of non-point pollution management facilities from the Ministry of Environment, Korea and entered into the infiltration trench. Particle size distribution (PSD), suspended solids (SS) removal efficiency, and infiltration rate change tests were performed on inflow and outflow water. In case of the PSD, the maximum particulate size in the outflow decreased from 64 ㎛ to 33 ㎛ as the operating duration elapsed. The SS removal efficiency improved from 97 % to 99 %. The infiltration rate changed from 0.113 L/sec to 0.015 L/sec during the operation duration. The maintenance timing was determined based on the stormwater runoff requirements with these changes in water quality and infiltration rate. The methodologies in this study could be used to estimate the timing of maintenance of other low impact development techniques.