• Title/Summary/Keyword: Infectious pathogen

Search Result 236, Processing Time 0.027 seconds

A Case on Streptococcal Pneumonia Associated with Leptomeningitis, Osteomyelitis and Epidural Abscess in a Patient with AIDS

  • Jeon, Jae Woong;Yoon, Hee Jung;Kim, Joo Seok;Ryu, Il Hwan;Choi, Ji Wook;Kim, Min Gyu;Na, Young Min;Yun, Hyeon Jeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.2
    • /
    • pp.80-83
    • /
    • 2014
  • Patients with acquired immunodeficiency syndrome (AIDS) are at higher risks of bacterial pneumonia than the general population, and the pathogen is the most commonly involved Streptococcus pneumoniae. We hereby report a case of pneumococcal pneumonia associated with leptomeningitis, osteomyelitis and epidural abscess in a patient with AIDS. He is being successfully treated with ampicillin/sulbactam and clindamycin. And because the pneumococcal infection is usually associated with morbidity and mortality rates in the setting of AIDS, we should consider for pneumococcal vaccinations among the AIDS populations.

Novel respiratory infectious diseases in Korea

  • Kim, Hyun Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.4
    • /
    • pp.286-295
    • /
    • 2020
  • Respiratory infections are very common and highly contagious. Respiratory infectious diseases affect not only the person infected but also the family members and the society. As medical sciences advance, several diseases have been conquered; however, the impact of novel infectious diseases on the society is enormous. As the clinical presentation of respiratory infections is similar regardless of the pathogen, the causative agent is not distinguishable by symptoms alone. Moreover, it is difficult to develop a cure because of the various viral mutations. Various respiratory infectious diseases ranging from influenza, which threaten the health of mankind globally, to the coronavirus disease 2019, which resulted in a pandemic, exist. Contrary to human expectations that development in health care and improvement in hygiene will conquer infectious diseases, humankind's health and social systems are threatened by novel infectious diseases. Owing to the development of transport and trading activity, the rate of spread of new infectious diseases is increasing. As respiratory infections can threaten the members of the global community at any time, investigations on preventing the transmission of these diseases as well as development of effective antivirals and vaccines are of utmost importance and require a worldwide effort.

Mycoplasma genitalium and Cancer: A Brief Review

  • Zarei, Omid;Rezania, Simin;Mousavi, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3425-3428
    • /
    • 2013
  • Approximately, 15-20% of all cancers worldwide are caused by infectious agents. Understanding the role of infectious agents on cancer development might be useful for developing new approaches to its prevention. Mycoplasma genitalium is a clinically important sexually transmitted pathogen that has been associated with several human diseases. There have been a few studies suggestive of probable roles of Mycoplasma genitalium in cancer development, including prostate and ovarian cancers and lymphomas, but the role of this microorganism like other Mycoplasma species in neoplasia is still conjectural. Considering the prevalence of Mycoplasma genitalium infections and also the emergence of resistant strains, Mycoplasma genitalium needs more attention in the infectious agent cancer-causing research area.

An Outbreak of Histomoniasis in Backyard Sanhuang Chickens

  • Liu, Dandan;Kong, Lingming;Tao, Jianping;Xu, Jinjun
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.597-602
    • /
    • 2018
  • Histomonas meleagridis is a facultative anaerobic parasite, which can cause a common poultry disease known as histomoniasis. The species and age of the birds impacts on the susceptibility, with turkey being the most susceptible species. Chickens are less susceptible to H. meleagridis than turkeys and usually serve as reservoir hosts. Here, the diagnosis of an outbreak of histomoniasis in backyard Sanhuang chickens is described. The primary diagnosis was made based on clinical symptoms, general changes at necropsy, histopathology, and the isolation and cultivation of parasites. The pathogen was further confirmed by cloning, PCR identification, and animal inoculation tests. A strain of H. meleagridis, named HM-JSYZ-C, with a higher pathogenicity level in chickens was obtained. The study lays a foundation for further investigations into H. meleagridis and histomoniasis in chickens.

Use of In Vivo-Induced Antigen Technology to Identify In Vivo-Expressed Genes of Campylobacter jejuni During Human Infection

  • Hu, Yuanqing;Huang, Jinlin;Li, Qiuchun;Shang, Yuwei;Ren, Fangzhe;Jiao, Yang;Liu, Zhicheng;Pan, Zhiming;Jiao, Xin-An
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.363-370
    • /
    • 2014
  • Campylobacter jejuni is a prevalent foodborne pathogen worldwide. Human infection by C. jejuni primarily arises from contaminated poultry meats. Genes expressed in vivo may play an important role in the pathogenicity of C. jejuni. We applied an immunoscreening method, in vivo-induced antigen technology (IVIAT), to identify in vivo-induced genes during human infection by C. jejuni. An inducible expression library of genomic proteins was constructed from sequenced C. jejuni NCTC 11168 and was then screened using adsorbed, pooled human sera obtained from clinical patients. We successfully identified 24 unique genes expressed in vivo. These genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, and other processes. We selected six genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results showed that the selected six genes were significantly upregulated in vivo but not in vitro. In short, these identified in vivo-induced genes may contribute to human infection of C. jejuni, some of which may be meaningful vaccine candidate antigens or diagnosis serologic markers for campylobacteriosis. IVIAT may present a significant and efficient method for understanding the pathogenicity mechanism of Campylobacter and for finding targets for its prevention and control.

Epidemiological Concepts and Strategies in Breeding Soybeans for Disease Resistance

  • Seung Man, Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.97-107
    • /
    • 1990
  • The epidemiology of plant disease deals with the dynamic processes of host-pathogen interactions, which determine the prevalence and severity of the disease. Epidemic processes for most foliar diseases of plants follow a series of steps: arrival of pathogens on plant surfaces, initial infection, incubation period, latent period, sporulation, dissemination of secondary inoculum, and infectious period. These complex biological processes are influenced by the environment-Man also often interfers with these processes by altering the host and pathogen populations and the environment. Slowing or halting any of the epidemic processes can delay the development of the epidemic, so that serious losses in yield due to disease do not occur. It is generally recognized that the most effective and efficient method of minimizing disease damage is through the use of resistant cultivars, particularly when other methods such as fungicide applications are not economically feasible-Populations of plant pathogens are not genetically uniform nor are they necessarily stable. Cultivars bred for resistance to current populations of a pathogen may not be resistant in the future due to selection pressures placed on the pathogen populations. Understanding population development and genetic variability in the pathogen, and knowledge of the genetics of resistance in the plant should help in developing breeding strategies that wi1l provide effective and stable disease control through genetic resistance. In the United States, soybeans have ranked first in value of crops sold off the farm in recent years. Soybeans have been the leading U. S.

  • PDF

Inactivation of Wilt Pathogen(Fusarium oxysporum f. sp.) using Plasma in Tomato Hydroponic Cultivation (토마토 수경재배에서 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp.) 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.323-332
    • /
    • 2024
  • Circulating hydroponic cultivation has the advantage of reducing soil and water pollution problems caused by discharge of fertilizer components because the nutrient solution is reused. However, cyclic hydroponic cultivation has a low biological buffering capacity and can cause outbreaks of infectious root pathogens. Therefore, it is necessary to develop technologies or disinfection systems to control them. This study used dielectric barrier discharge plasma, which generates various persistent oxidants, to treat Fusarium oxysporum f. sp., a pathogen that causes wilt disease. Batch and intermittent continuous inactivation experiments were conducted, and the results showed that the total residual oxidant was persistent in intermittent plasma treatment at intervals of 2-3 days, and F. oxysporum was treated efficiently. Intermittent plasma treatment did not inhibit the growth of tomatoes.

Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection

  • Jin Kyung Kim;Prashanta Silwal;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.37.1-37.15
    • /
    • 2020
  • Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a serious infectious disease with high morbidity and mortality. In addition, the threat of drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to research for understanding the molecular nature of dynamic interactions between host and pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a well-known virulence mechanism, the molecular events to promote intracellular parasitism remains elusive. To combat intracellular Mtb infection, several defensive processes, including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes trigger inflammation, and undergo necrotic cell death, potentially harmful responses in case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and development of new paradigms of therapeutics.

Modeling of Infectious Information Hiding System for Video Contents using the Biological Virus (생물학적 바이러스를 이용한 비디오 콘텐츠의 전염성 정보은닉 시스템 모델링)

  • Jang, Bong-Joo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.34-45
    • /
    • 2012
  • In this paper, we proposed and modeled a video contents protection system based on the infectious information hiding(IIH) technique as using characteristics of biological viruses. Our proposed IIH System considered the requisite important information for video contents protection as the infectious virus, and suggested a new paradigm about video contents protection that transmitted infectious information from contents(host) or video CODECs(viral vector). Also, we modeled the Pathogen, Mutant and Contagion virus as the infectious information and defined technical tools about verification of infectious information, kernel based IIH, contents based IIH and creation/regeneration of infectious information as main techniques for our IIH system. Finally, through simulations that carried the infectious information by using conventional information hiding algorithms as kernel based and contents based IIH techniques, we verified possibilities of our proposed IIH system.