• Title/Summary/Keyword: Inertial tracking

Search Result 85, Processing Time 0.029 seconds

A TRACKING FILTER WITH PSEUDO-MEASUREMENTS IN LINE-OF-SIGHT CARTESLAN COORDICATE SYSTEM

  • Sung, Tae-Kyung;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.125-130
    • /
    • 1991
  • This paper presents a tracking filter using pseudomeasurements in an estimated line-of-sight Cartesian coordinate system(ELCCS) whose x-axis is on the line-of-sight to an estimated target position. A target dynamics model and a measurement equation in the ELCCS are derived first and then a tracking filter in the ELCCS named moving coordinate tracking filter(MCTF) is proposed. It is shown that this MCTF is equivalent to a Kalman filter in the inertial Cartesian coordinate system which is widely used in the target tracking system. By approximating the MCTF for a pseudomeasurement noise and an error covariance matrix in the ELCCS, decoupling of three axes can be achieved. In this case, named decoupled moving coordinate tracking filter(DMCTF), computation time can be drastically reduced by utilizing its parallel structure. Finally, the stochastic properties of the MCTF and DMCTF are presented. Especially, a sufficient condition of nondestabilizing deviation for the DMCTF is proposed. The performance of the MCTF and DMCTF are compared with a conventional Kalman tracking filter.

  • PDF

Numerical Simulation of Impactor Collection Efficiency according to Altitude (대기 고도에 따른 입자 포집용 관성 임팩터의 설계 및 포집효율 예측)

  • Kim, Gyuho;Yook, Se-Jin;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In this study, the collection efficiency of inertial impactors was numerically simulated by employing the statistical Lagrangian particle tracking(SLPT) model. The SLPT model was proven to be correct in predicting the impactor collection efficiency, when the numerically obtained collection efficiencies were compared with the experimental data of Marple et al.(1987) at normal pressure level and the experimental data of $Marjam{\ddot{a}}ki$ et al.(2000) at low pressure level. Based on the validation results, balloon-borne impactors with the cut-off sizes of $1{\mu}m$, $2.5{\mu}m$, and $10{\mu}m$ were designed. Then, the sampling flowrates of the inertial impactors, required to keep the cut-off sizes constant at different pressures and temperatures, were estimated according to the altitude.

An Experimental Study on Coordinates Tracker Realization for EOTS Slaved to the Radar of a Helicopter (전자광학추적장비의 좌표추적기 구현 및 헬리콥터 탑재 레이더 연동시험에 관한 연구)

  • Jung Seul;Park Ju-Kwang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.369-377
    • /
    • 2005
  • This paper describes the realization of a coordinates tracking algorithm for an EOTS (Electro-Optical Tracking System). The EOTS stabilizes the image sensors, tracks targets automatically, and provides navigation capability for vehicles. The coordinates tracking algorithm calculates the azimuth and the elevation angle of an EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which are generated by a Radar. In the error analysis, the unexpected behaviors of an EOTS due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. The application of this algorithm to an EOTS will improve the operational capability by reducing the time which is required to find the target and support flight especially in the night time flight and the poor weather condition.

Terrain Aided Inertial Navigation for Precise Planetary Landing (정밀 행성 착륙을 위한 지형 보조 관성 항법 연구)

  • Jeong, Bo-Young;Choi, Yoon-Hyuk;Jo, Su-Jang;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.673-683
    • /
    • 2010
  • This study investigates Terrain Aided Inertial Navigation(TAIN) which consists of Inertial Navigation System (INS) with the optical sensor for precise planetary landing. Image processing is conducted to extract the feature points between measured terrain data and on-board implemented terrain information. The navigation algorithm with Iterated Extended Kalman Filter(IEKF) can compensate for the navigation error, and provide precise navigation information compared to single INS. Simulation results are used to demonstrate the feasibility of integration to accomplish precise planetary landing. The proposed navigation approach can be implemented to the whole system coupled with guidance and control laws.

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

Visual Target Tracking and Relative Navigation for Unmanned Aerial Vehicles in a GPS-Denied Environment

  • Kim, Youngjoo;Jung, Wooyoung;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.258-266
    • /
    • 2014
  • We present a system for the real-time visual relative navigation of a fixed-wing unmanned aerial vehicle in a GPS-denied environment. An extended Kalman filter is used to construct a vision-aided navigation system by fusing the image processing results with barometer and inertial sensor measurements. Using a mean-shift object tracking algorithm, an onboard vision system provides pixel measurements to the navigation filter. The filter is slightly modified to deal with delayed measurements from the vision system. The image processing algorithm and the navigation filter are verified by flight tests. The results show that the proposed aerial system is able to maintain circling around a target without using GPS data.

Stabilization Loop Design Method on Dynamic Platform

  • Kwon, Young-Shin;Kim, Doh-Hyun;Kim, Lee-Han;Hwang, Hong-Yeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.5-156
    • /
    • 2001
  • Stabilized tracking platform in a missile consisting of a flat planar antenna, pitch/yaw gimbals, gear trains, and current controlled DC drive motors for pitch and yaw gimbal must have a capability to track a target as an inertial sensor in the presence of missile body motion such as maneuvering and vibration. Because of this reason, tracking a target from dynamic platform requires a servo architecture that includes a outer tracking loop(position loop) and inner rate loop that stabilizes the line of sight(LOS). This paper presents a gimbaled platform model including nonlinear phenomena due to viscous and Coulomb friction based on experimental data and torque equilibrium equation, the design concept for the inner tacholoop having P controller structure ...

  • PDF

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

Development of Underwater Vehicle Position Tracking Algorithm by using a Gyro-Doppler Sensor and Ultra Short Base Line (자이로 도플러 센서와 USBL을 통한 수중체 위치추적 알고리즘개발)

  • Kim, Deok-Jin;Park, Dong-Won;Park, Yeon-Sic
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1973-1977
    • /
    • 2006
  • This paper reports the absolute position tracking algorithm of underwater vehicles such as ROV, AUV in global region by fusing sensor informations of IMU, DVL, USBL, DGPS etc. This algorithm is to be used in the position tracking of the 6,000m class deep-sea unmanned underwater vehicle, HEMIRE for scientific exploration.

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.