Numerical Simulation of Impactor Collection Efficiency according to Altitude

대기 고도에 따른 입자 포집용 관성 임팩터의 설계 및 포집효율 예측

  • Kim, Gyuho (Department of Mechanical Engineering, Hanyang University) ;
  • Yook, Se-Jin (Department of Mechanical Engineering, Hanyang University) ;
  • Ahn, Kang-Ho (Department of Mechanical Engineering, Hanyang University)
  • Published : 2012.03.31

Abstract

In this study, the collection efficiency of inertial impactors was numerically simulated by employing the statistical Lagrangian particle tracking(SLPT) model. The SLPT model was proven to be correct in predicting the impactor collection efficiency, when the numerically obtained collection efficiencies were compared with the experimental data of Marple et al.(1987) at normal pressure level and the experimental data of $Marjam{\ddot{a}}ki$ et al.(2000) at low pressure level. Based on the validation results, balloon-borne impactors with the cut-off sizes of $1{\mu}m$, $2.5{\mu}m$, and $10{\mu}m$ were designed. Then, the sampling flowrates of the inertial impactors, required to keep the cut-off sizes constant at different pressures and temperatures, were estimated according to the altitude.

Keywords

References

  1. Flagan, R. C.(1982). Compressible flow inertial impactors, Journal of Colloid and Interface Science, 87, 291-299. https://doi.org/10.1016/0021-9797(82)90390-3
  2. Hinds, W. C.(1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Ed., New York, John Wiley.
  3. Kim, J. H., Mulholland, G. W., Kukuck, S. R., and Pui, D. Y.H.(2005). Slip correction measurements of certified PSL nanoparticles using a nano-meter differential mobility analyzer(nano-DMA) for Knudsen number from 0.5 to 83, Journal of Research of the National Institute of Standards and Technology, 110, 31-54. https://doi.org/10.6028/jres.110.005
  4. Kim, Y. J., and Yook, S. J.(2011). Enhancement of collection efficiency of inertial impactors using el liptical concave impaction plates, Journal of Aerosol Science, 42, 898-908. https://doi.org/10.1016/j.jaerosci.2011.08.006
  5. Marjamaki, M., Keskinen, J., Chen, D. R., and Pui, D. Y. H.(2000). Preformance evaluation of the electrical low-pressure impactor(ELPI), Journal of Aerosol Science, 31, 249-261. https://doi.org/10.1016/S0021-8502(99)00052-X
  6. Marple, V. A., Rubow, K. L., Turner, W., and Spengler, J. D.(1987). Low flow rate sharp cut impactors for indoor air sampling: Design and calibration, Journal of the Air Pollution Control Association, 37, 1303-1307.
  7. Munson, B. R., Young, D. F., Okiishi, T. H.(2005). Fundamentals of Fluid Mechanics. 5th Ed., Hoboken, John Wiley.
  8. Park, S. S., Bae, M. S., Schauer, J. J., Kim, Y. J., Cho, S. Y., and Kim, S. J.(2006). Molecular composition of PM2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign, Atmospheric Environment, 40, 4182-4198. https://doi.org/10.1016/j.atmosenv.2006.02.012
  9. Schneider, J., Hings, S. S., Hock, B. N., Weimer, S., Borrmann, S., Fiebig, M., Petzold, A., Busen, R., Karcher, B.(2006). Aircraft-based operation of an aerosol mass spectrometer: Measurements of tropospheric aerosol composition, Journal of Aerosol Science, 37, 839-857. https://doi.org/10.1016/j.jaerosci.2005.07.002
  10. Tobo, Y., Iwasaka, Y., Shi, G. Y., Kim, Y. S., Ohashi, T., Tamura, K., Zhang, D.(2007). Balloon-borne observations of high aerosol concentrations near the summertime tropopause over the Tibetan Plateau. Atmospheric Research, 84, 233-241. https://doi.org/10.1016/j.atmosres.2006.08.003
  11. Yook, S. J., Fissan, H., Asbach, C., Kim, J. H., Wang, J., Yan, P. Y., and Pui, D. Y. H.(2007). Evaluation of protection schemes for extreme ultraviolet lithography(EUVL) masks against top-down aerosol flow, Journal of Aerosol Science, 38, 211-227. https://doi.org/10.1016/j.jaerosci.2006.11.010