• Title/Summary/Keyword: Inertial term

Search Result 57, Processing Time 0.026 seconds

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

GPS/INS Integration using Fuzzy-based Kalman Filtering

  • Lim, Jung-Hyun;Ju, Gwang-Hyeok;Yoo, Chang-Sun;Hong, Sung-Kyung;Kwon, Tae-Yong;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.984-989
    • /
    • 2003
  • The integrated global position system (GPS) and inertial navigation system (INS) has been considered as a cost-effective way of providing an accurate and reliable navigation system for civil and military system. Even the integration of a navigation sensor as a supporting device requires the development of non-traditional approaches and algorithms. The objective of this paper is to assess the feasibility of integrated with GPS and INS information, to provide the navigation capability for long term accuracy of the integrated system. Advanced algorithms are used to integrate the GPS and INS sensor data. That is fuzzy inference system based Weighted Extended Kalman Filter(FWEKF) algorithm INS signal corrections to provided an accurate navigation system of the integrated GPS and INS. Repeatedly, these include INS error, calculated platform corrections using GPS outputs, velocity corrections, position correction and error model estimation for prediction. Therefore, the paper introduces the newly developed technology which is aimed at achieving high accuracy results with integrated system. Finally, in this paper are given the results of simulation tests of the integrated system and the results show very good performance

  • PDF

The Control of Switched Reluctance Motors Using Binary Observer without Speed and Position Sensors (이원 관측기를 이용한 SRM의 속도 및 위치 센서없는 제어)

  • Sin, Jae-Hwa;Yang, Lee-U;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.457-466
    • /
    • 2002
  • The speed and position control of SRM(Switched Reluctance Motor) needs the encoder or resolver to obtain the rotor position information. These position sensors can be affected by the EMI, dusty, and high temperature surroundings. Therefore the speed and position sensorless control has been studied widely In this paper, the binary observer of the SRM which has two feedback compensation loops to control the speed of SRM is proposed. One loop reduces the estimation error like the sliding mode observer, and the other removes the estimation error chattering occurred in the sliding mode observer. This observer is constructed on the basis of variable structure control theory and has the inertial term to exclude the chattering. This method has a good estimation performance in spite of nonlinear modeling of SRM. The advantages of the proposed method are verified experimentally.

A NUMERICAL STUDY ON FLOWS IN A FUEL TANK WITH BAFFLES AND POROUS MEDIA TO REDUCE SLOSHING NOISE (연료탱크 슬로싱 소음 저감을 위한 배플 및 다공성 물질 설치에 따른 유동해석 연구)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.68-76
    • /
    • 2009
  • The sloshing tank causes the instability of the fluid flows and the fluctuation of the impact pressure by the liquid on the tank. These flow characteristics inside the sloshing tank can generate the uncomfortable sloshing noise. In the present study, a numerical analysis for the reduction of a fuel tank sloshing noise was performed. To simulate the flow characteristics in a sloshing tank with partially filled liquid, a VOF method was used for interfacial flows by applying a momentum source term for the sloshing motion in a non-inertial reference frame. This numerical method was verified by comparing its results with the available experimental data. For the reduction of the sloshing noise, the horizontal and vertical baffles and porous media inside a sloshing tank were considered and numerically analyzed in the present study. For various installations of these baffles and porous media, the characteristics of the liquid behavior in the sloshing tank were obtained along with the impact pressure on the wall and the height of the free surface along the wall. These basic results can be used for the design of the actual vehicular fuel tank with the reduced sloshing noise.

Underwater Localization using RF Sensor and INS for Unmanned Underwater Vehicles (RF 센서와 INS을 이용한 UUV 위치 추정)

  • Park, Daegil;Kwak, Kyungmin;Jung, Jaehoon;Kim, Jinhyun;Chung, Wan Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 2017
  • In this paper, we propose an underwater localization scheme through the fusion of an inertial navigation system (INS) and the received signal strength (RSS) of electromagnetic (EM) wave sensors to guarantee precise localization performance with high sampling rates. In this localization scheme, the INS predicts the pose of the unmanned underwater vehicle (UUV) by dead reckoning at every step, and the RF sensors corrects the UUV position functions using the Earth-fixed reference when the UUV is located in underwater wireless sensor networks (UWSN). The localization scheme and state modeling were conducted in the extended Kalman filter framework, and UUV localization experiments were conducted in a basin environment. The scheme achieved reliable localization accuracy during long-term navigation, demonstrating the feasibility of exploiting EM wave attenuation as Earth-fixed reference sensors.

Precision Analysis of NARX-based Vehicle Positioning Algorithm in GNSS Disconnected Area

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.289-295
    • /
    • 2021
  • Recently, owing to the development of autonomous vehicles, research on precisely determining the position of a moving object has been actively conducted. Previous research mainly used the fusion of GNSS/IMU (Global Positioning System / Inertial Navigation System) and sensors attached to the vehicle through a Kalman filter. However, in recent years, new technologies have been used to determine the location of a moving object owing to the improvement in computing power and the advent of deep learning. Various techniques using RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and NARX (Nonlinear Auto-Regressive eXogenous model) exist for such learning-based positioning methods. The purpose of this study is to compare the precision of existing filter-based sensor fusion technology and the NARX-based method in case of GNSS signal blockages using simulation data. When the filter-based sensor integration technology was used, an average horizontal position error of 112.8 m occurred during 60 seconds of GNSS signal outages. The same experiment was performed 100 times using the NARX. Among them, an improvement in precision was confirmed in approximately 20% of the experimental results. The horizontal position accuracy was 22.65 m, which was confirmed to be better than that of the filter-based fusion technique.

Design of Transfer Alignment Algorithm with Velocity and Azimuth Matching for the Aircraft Having Wing Flexibility (유연성을 가지는 비행체를 위한 속도/방위각 정합 전달 정렬 알고리즘 설계)

  • Suktae Kang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-226
    • /
    • 2023
  • A transfer alignment is used to initialize, align, and calibrate a SINS(Slave INS) using a MINS(Master INS) in motion. This paper presents an airborne transfer alignment with velocity and azimuth matching to estimate inertial sensor biases under the wing flexure influence. This study also considers the lever arm, time delay and relative orientation between MINS and SINS. The traditional transfer alignment only uses velocity matching. In contrast, this paper utilizes the azimuth matching to prevent divergence of the azimuth when the aircraft is stationary or quasi-stationary since the azimuth is less affected by the wing flexibility. The performance of the proposed Kalman filter is analyzed using two factors; one is the estimation performance of gyroscope and accelerometer bias and the other is comparing aircraft dynamics and attitude covariance. The performance of the proposed filter is verified using a long term flight test. The test results show that the proposed scheme can be effectively applied to various platforms that require airborne transfer alignment.

Field Test of Automated Activity Classification Using Acceleration Signals from a Wristband

  • Gong, Yue;Seo, JoonOh
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.443-452
    • /
    • 2020
  • Worker's awkward postures and unreasonable physical load can be corrected by monitoring construction activities, thereby increasing the safety and productivity of construction workers and projects. However, manual identification is time-consuming and contains high human variance. In this regard, an automated activity recognition system based on inertial measurement unit can help in rapidly and precisely collecting motion data. With the acceleration data, the machine learning algorithm will be used to train classifiers for automatically categorizing activities. However, input acceleration data are extracted either from designed experiments or simple construction work in previous studies. Thus, collected data series are discontinuous and activity categories are insufficient for real construction circumstances. This study aims to collect acceleration data during long-term continuous work in a construction project and validate the feasibility of activity recognition algorithm with the continuous motion data. The data collection covers two different workers performing formwork at the same site. An accelerator, as well as portable camera, is attached to the worker during the entire working session for simultaneously recording motion data and working activity. The supervised machine learning-based models are trained to classify activity in hierarchical levels, which reaches a 96.9% testing accuracy of recognizing rest and work and 85.6% testing accuracy of identifying stationary, traveling, and rebar installation actions.

  • PDF

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

The Implementation of Tightly coupled SDINS/GPS System based on the Ring Laser Gyro (링레이저 자이로 기반 관성항법장치와 위성항법장치의 강결합 방식 시스템 구현)

  • Yu, Haesung;Park, Sang Eun;Jeong, Jinseob;Park, Heung-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.134-141
    • /
    • 2013
  • This paper explores a real-time system implementation to couple tightly StrapDown Inertial Navigation System(SDINS) and Global Positioning System(GPS) mounted on the aircraft. When implementing the SDINS/GPS coupled system in real-time processor, we have to deliberate SDINS's unique characteristics based on the ring laser gyro, and besides, lever-arm, measurements, and error compensation method. The novel modeling method is applied to system the misalignment error term of gyro to estimate the cumulative heading attitude errors while the aircraft banking to turn repeatedly. Captive Flight Test results show that the proposed modeling strategy has good performance.