• Title/Summary/Keyword: Inelastic Behavior

Search Result 514, Processing Time 0.031 seconds

Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint and the vertical distribution of lateral load are evaluated considering higher modes on the response of RC OMRF using the pushover analysis. A structure used for the analysis was a 5-story structure located at site class SB and seismic design category C, which was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was identified using fiber model. Also, bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The results of pushover analysis showed that, although the rigid beam-column joint overestimated the stiffness and strength of the structure, the inelastic shear behavior of beam-column joint could be neglected in the process of structural design since the average response modification factor satisfied the criteria of KBC2009 for RC OMRF independent to inelastic behavior of joint.

Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforce Concrete Bridge Columns under Earthquake (지진시 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구)

  • 김태훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.296-303
    • /
    • 2000
  • The purpose of this study is to find inelastic behavior and ductility capacity of reinforced concrete bridge columns under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, due to the abrupt change in their stiffness local discontinuous deformation can be taken into account by introducing interface element. Also an analytical model is developed to express the confining effects of lateral tie which depend on the existence or nonexistence and the amounts of transverse confinement, etc. The proposed numerical method for inelastic behavior and ductility capacity of reinforced concrete bridge columns will be verified by comparison with reliable experimental results.

  • PDF

Experimental Study on the Inelastic Behavior of Single-layer Latticed Dome (단층 래티스 돔의 비탄성 거동에 대한 실험연구)

  • Kim, Jong-Soo;Kim, Sang-Dae;Kim, Myeong-Han;Oh, Myoung-Ho;Shin, Chang-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.165-170
    • /
    • 2008
  • This study discusses the inelastic behavior of single-layer latticed dome, composed of tubular truss member and newly proposed joint sections, through loading test on the scale-down structure. The loading test was performed under displacement control conditions, using loading transfer system for the same value of point loads on all joints. Maximum applied load was nearly 1.6 times of the design load, and inelastic buckling occured beyond compressive yeilding in some members. The displacement of structure was maimtained upto the limit of oil jack. The behavior of latticed dome from the loading test was analyzed on the view of structural design practice.

  • PDF

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Direct Inelastic Slab Design (직접비탄성 슬래브 설계법의 개발)

  • Jung Won-Hee;Park Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.498-501
    • /
    • 2004
  • A new slab design using secant stiffness, Direct Inelastic Slab Design, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of slab because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and compared with traditional nonlinear analysis, and experiments. The Direct Inelastic Slab Design, as an integrated analysis/design method, can directly address the design strategy intended by the engineer, such as moment strength and ductility limit. As a result, economical and safe design can be achieved.

  • PDF

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

A Study of influence factors on the bridge seismic behavior (교량의 지진거동에 미치는 영향인자에 관한 연구)

  • Choi, Jong-Man;Kook, Seung-Kyu;Kim, Jun-Bum;Jung, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.372-379
    • /
    • 2005
  • The earthquake resistant design concept allows the nonlinear behavior of structures under the design earthquake. Therefore the response spectrum method provided in most codes introduces the response modification factors to consider the nonlinear behavior in the design process. For bridges, the response modification factors are given according to the ductility as well as the redundancy of piers. In this study, among influence factors on the nonlinear seismic behavior, the randomness of artificial accelerograms simulated with different durations, the pier ductility represented by the inelastic behavior characteristic curve and the regularity represented by pier heights are selected. The influence of such factor on the seismic behavior is investigated by comparing response modification factors calculated with the nonlinear time step analysis.

  • PDF

Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution (적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가)

  • 이동근;최원호;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. Evaluation method of seismic performance based on the pushover analysis reflected in PBSE was developed by some researchers. For the evaluation of inelastic global and local seismic responses by pushover analysis exactly. lateral load distribution should be adjusted and reflected the dynamic characteristics of structural system and various seismic ground motions. And performance point should be determined based on the evaluation of reasonable deformation capacity of a building more exactly. An effective method based on the improved the adaptive lateral load distribution and the equivalent responses of a multistory building is proposed in this study to efficiently estimate the accurate inelastic seismic responses. The proposed method can be used to evaluate the seismic performance for the global inelastic behavior of a building and to accurately estimate its local inelastic seismic responses. In order to demonstrate the accuracy and validity of this method, inelastic seismic responses estimated by the proposed method are compared with those obtained from other analytical methods.

Analytical Study on the Size Effect Influencing Inelastic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2002
  • The purpose of this study is to investigate the size effect on inelastic behavior of reinforced concrete bridge piers. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. To determine the size effect on bridge pier inelastic behavior, a 1/4-scale replicate model was also loaded for comparison with the full-scale bridge pier behavior.

A Study on the Inelastic Buckling Behavior of Welded Thin-Walled Sections (용접박판형강의 비탄성 좌굴 거동에 대한 연구)

  • 이상우;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.11-18
    • /
    • 1996
  • Inelastic buckling stress of Welded Thin-Walled Steel Sections was investigated by - using Spline Finite Strip Method. Several types of membrane residual stress and nonlinear stress-strain relationship were considered to produce reasonable fits to test results. A simple formula for the inelastic local buckling stress of welded sections was also proposed and compared with Korean Standard Specifications for Highway Bridges.

  • PDF