• Title/Summary/Keyword: Industrial wastewater treatment

Search Result 492, Processing Time 0.028 seconds

Endocrine Disrupting Effects of the Industrial Wastewater Effluents Discharged from the Treatment Plant (산업폐수처리장 방류수의 내분비계 장애작용 평가)

  • Oh Seung-Min;Kim Gi-Suh;Ryu Byung Taek;Jang Hyung Seog;Lee Hee-Sung;Chung Kyu-Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.375-382
    • /
    • 2004
  • This study was designed to investigate potential endocrine disrupting effects of several industrial wastewater effluents discharged from cosmetic, plaiting, paint, textile industry using EROD bioassay and E-Screen assay. The results of E-screen assay showed that textile industrial wastewater could act as a full agonist and cosmetics and plaiting industrial wastewater could act as a partial agonist. On the contrary, the wastewater discharged from paint industry did not show any estrogenic effect. Estrogenic activity in the effluents of cosmetic and paint industrial wastewater was lower than that in the influents indicating that the wastewater treatment process minimized the effects of discharges on water quality. Despite of these results, it was recognized that wastewater treatment was not always minimize toxic impact. In this study, increased estrogenic effect was observed in the effluents of plating and textile wastewater, and EROD activity was increased in the effluents of cosmetic and plating wastewater.

Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater (난분해성 산업폐수 처리를 위한 고도산화기술)

  • Kim, Min Sik;Lee, Ki-Myeong;Lee, Changha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.445-462
    • /
    • 2020
  • Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.

Analysis on the Actual Conditions of Wastewater Treatment Facilities in Chungcheongnam-do Province Industrial Complexes (충청남도 산업단지의 오·폐수처리실태 분석)

  • Lim, Bong-Su;Kim, Do-Young;Yi, Sang-Jin;Oh, Hye-Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.850-862
    • /
    • 2007
  • This study was carried out to survey the actual conditions of wastewater treatment facilities to obtain basic data for the management of wastewater from industrial complexes in Chungcheongnam-do province. Wastewater production flow per site area by watersheds was $49.2m^3/km^2/d$ for Sapgyoho, $8.1m^3/km^2/d$ for Anseongcheon, $5.7m^3/km^2/d$ for Seohae, and $2.9m^3/km^2/d$ for Geumgang. Sapgyoho showed 75% of the total production flow, which was the highest value, Geumgang showed 4% of total flow, which was the lowest value. Average total extra rate as production flow/capacity flow in the wastewater treatment facilities for industrial complex is 49%. Considering by watersheds, the extra rates of Seohae, Geumgang, Anseongcheon, and Sapgyoho, are 73%, 65%, 62%, and 33% respectively. This means that the design of capacity flow in wastewater treatment facilities was too large. Effluent concentration of wastewater treatment facilities did not exceed discharge limit mostly. The removal efficiency rate for water quality item was 90% in BOD, 70% in COD, 80% in SS, 30 to 80% in TN, and 20 to 90% in TP, so the organic removal was good, but the nutrient removal was low and interval of variation was high. The removal efficiency rate of the agricultural was industrial complexes is lower than the national and local complexes. The construction cost of the wastewater treatment facilities in Chungcheongnam-do was $1,756Won\;per\;m^3$, treatment cost was $189Won\;per\;m^3$, and they were about two times and 1.2 times higher than the nation-wide cost, respectively. The treatment cost consists of 39% for man power, 21% for chemical, 16% for power, 11% for sludge treatment, and 13% for others.

Studies on the Effluent Characteristics of Dyeing Wastewater by Textile Classification (섬유 형태에 따른 염색폐수 배출특성 연구)

  • Lee, Soo-Hyung;Park, Jung-Min;Park, Sang-Jung;Jeong, Je-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.881-888
    • /
    • 2007
  • In order to investigate the characteristics of the non-biodegradable material, the $BOD_5/COD_{Cr}$ ratio was used. The average ratio of industrial complex's influent wastewater was 2.29~2.96, the effluent ratio was 4.29~19.0. The removal efficiency of $UV_{254}$ by physicochemical treatment was 22.8~94.7% and 5.3~77.2% by biological treatment, respectively. Of the wastewater removal efficiency for each of the items, the $BOD_5$ treatment efficiency was the greatest at 97.3% and the color & TN treatment efficiency was 40~70%. The study of the economical assessment showed that the complex as well as the individual companies spent 722~1,298 won for each ton of treated wastewater. All of the wastewater treatment facilities spent the most money on chemicals needed to treat the wastewater. The total cost for Nylon manufacturing wastewater treatment plant was the greatest while the total cost for cotton manufacturing wastewater treatment plant turned out to the lowest. As respects of removal efficiency and economocal assessment, Polyester A and Cotton manufacturing wastewater treatment plants were better effective than a dyeing industrial complex wastewater treatment plant.

A Study of Advanced Oxidation Process for Reuse of Industrial Wastewater (산업폐수 재이용을 위한 고급산화공정 시스템 연구)

  • Kim, Sung-Joon;Jin, Ming-Ji;Won, Chan-Hee;Hwang, Jeong-Seok;Lee, Gil-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.580-584
    • /
    • 2010
  • As water becomes more scarce around the world the reuse of treated wastewater is being recenlty considered as indispensible trend we need to follow. Especially, industrial area consuming large amount of water has been encouraged to reuse the treated wastewater to secure sufficient water for the production of merchandise. In this study, a study of advanced oxidation process for treatment of industrial wastewater. The treatment performance of UV and ozoznation and five types advanced oxidation processes such as UV/AC, UV/Catalyst, $O_3$/Catalyst, UV/$O_3$/Catalyst was experimentally investigated for reuse of industrial wastewater. The removal efficiency of $COD_{Cr}$, color were relatively evaluated in each treatment unit simulated outflow water of wastewater treatment area. UV/$O_3$/Catalyst process showed the highest $COD_{Cr}$ remaval and color remaval among proposed oxidation process.

COD removal from industrial wastewater plants using reverse osmosis membrane

  • Madaeni, S.S.;Samieirad, S.
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.273-282
    • /
    • 2010
  • Treatment and reuse of industrial wastewater is becoming a major goal due to water scarcity. This may be carried out using membrane separation technology in general and reverse osmosis (RO) in particular. In the current study, polyamide (FT-30) membrane was employed for treatment of wastewater obtained from Faraman industrial zone based in Kermanshah (Iran). The effects of operating conditions such as transmembrane pressure, cross flow velocity, temperature and time on water flux and rejection of impurities including COD by the membrane were elucidated. The aim was an improvement in membrane performance. The results indicate that most of the chemical substances are removed from the wastewater. In particular COD removal was increased from 64 to around 100% as temperature increased from 15 to $45^{\circ}C$. The complete COD removal was obtained at transmembrane pressure of 20 bars and cross flow velocity of 1.5 m/s. The treated wastewater may be reused for various applications including makeup water for cooling towers.

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

Biological Treatment of Phenolic Industrial Wastewater by a Mixed Culture Immobilized on Ceramic Beads (세라믹담체를 이용한 페놀계 산업폐수의 생물학적 처리)

  • Oh, Hee-Mock;Ku, Young-Hwan;Ahn, Kuk-Hyun;Jang, Kam-Yong;Kho, Yung-Hee;Kwon, Gi-Seok;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.755-762
    • /
    • 1995
  • A phenolic resin industrial wastewater containing about 41,000 mg/l of phenol and 2,800 mg/l of formaldehyde was biologically treated by a mixed culture GE2 immobilized on ceramic beads. This study was carried out with three experimental groups : Control-only added the sludge of papermill wastewater ; GE2 treatment-added GE2 to Control ; Ceramic treatment-applied ceramic carrier to GE2 treatment. When the original wastewater was diluted 80 times with aerated tap-water, influent COD$_{Mn}$ WaS 1,140 mg/l and that of the effluent was in the range of 22-35 mg/l, which was not much different among the experimental groups. However, at 20-times dilution, influent COD$_{Mn}$ was 4,800 mg/l and the effluent COD$_{Mn}$ of Control, GE2 treatment and Ceramic treatment was 179, 128 and 94 mg/l, respectively. COD$_{Mn}$, removal efficiency by Ceramic treatment was the highest, at 98.0%. At this time, the effluent phenol concentration of Control, GE2 treatment and Ceramic treatment was 10.71, 7.93 and 5.60, respectively. As the dilution times decreased, the removal efficiency of COD$_{Mn}$ and phenol did not change much, but COD$_{Mn}$ and phenol concentration of the effluent increased. Consequently, it is likely that the phenolic industrial wastewater containing phenol and formaldehyde can be biologically treated using a GE2 and ceramic carrier and that at 40-times dilution, the effluent completely meets the effluent standards for industrial wastewater treatment plant.

  • PDF

Comparison of the unit mass discharge from wastewater treatment facility in the industrial park with the estimation methods (산업단지 폐수발생량 원단위 산정 비교연구)

  • Kim, Joon-Yup;Choi, Kyoung-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.339-344
    • /
    • 2014
  • The predictive capacity of wastewater treatment facility in the industrial park was estimated by the traditional method and on-the-spot survey such as certification of wastewater report and the invoices of water supply and ground water supply. The ratios of a converted wastewater to supplied industrial water between traditional method and on-the-spot survey in the estimation methods were different. By using traditional method, the business type of clothes, accessary and fur production had 77.18 % of waste ratio of wastewater and $10.72m^3/day{\cdot}1000m^2$ unit mass of wastewater as the highest among 9 business types. With the respect to the on-the-spot survey, food manufacturing business type had 75 % of waste ratio of wastewater and $8.35m^3/day{\cdot}1000m^2$ unit mass of wastewater as the highest values. The amount of wastewater from on-the-spot survey method was 541 $m^3/day$ less than one from traditional method.