• Title/Summary/Keyword: Industrial manipulator

Search Result 198, Processing Time 0.032 seconds

A Study on the Control Characteristics of ER Valve-FHA System and Durability Test

  • Jang Sung-Cheol;Chang Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1621-1631
    • /
    • 2005
  • In this paper, making the best use of the features of the electro-rheological (ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power industry. Using the manufactured pressure control valve, a one-link manipulator with FHA (Flexible Hydraulic Actuator) is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system for the ER Valve which occurs from industrial controller. After having durability test, shear stress increased regularly because of starch particles crushed by pump and particle size that was almost the same. Moreover, Ra of copper electrode increased about 1.56 times rather than before those of performing durability test, and Rz increased about 2.2 times.

Direct Teaching and Playback Algorithm for Peg-in-Hole Task using Impedance Control (펙인홀 작업을 위한 임피던스 제어 기반의 직접교시 및 재현 알고리즘)

  • Kim, Hyun-Joong;Back, Ju-Hoon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.538-542
    • /
    • 2009
  • Industrial manipulators have been mostly used in large companies such as automakers and electronics companies. In recent years, however, demands for industrial manipulators from small and medium-sized enterprises are on the increase because of shortage of manpower and high wages. Since these companies cannot hire robot engineers for operation and programming of a robot, intuitive teaching and playback techniques of a robot manipulator should replace the robot programming which requires substantial knowledge of a robot. This paper proposes an intuitive teaching and playback algorithm used in assembly tasks. An operator can directly teach the robot by grasping the end-effector and moving it to the desired point in the teaching phase. The 6 axis force/torque sensor attached to the manipulator end-effector is used to sense the human intention in teaching the robot. After this teaching phase, a robot can track the target position or trajectory accurately in the playback phase. When the robot contacts the environment during the teaching and playback phases, impedance control is conducted to make the contact task stable. Peg-in-hole experiments are selected to validate the proposed algorithm since this task can describe the important features of various assembly tasks which require both accurate position and force control. It is shown that the proposed teaching and playback algorithm provides high positioning accuracy and stable contact tasks.

A Numerical Analysis of the Behavior of the Free Surface in a Moving Cup (이송되는 컵 내부의 자유 표면의 거동 특성에 대한 수치해석)

  • Kim, Yun-Sun;Hong, Tae-Hyub;Kim, Chang-Nyung;Rhim, Sung-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.394-401
    • /
    • 2009
  • A manipulator is operated for the motion of mechanical hands or arms. When a cup including liquid inside is shifted by a manipulator, it is important to know how a free surface of the liquid moves. In this study, non dimensional parameters have been found that affect the rise of the free surface in a cup moving with constant acceleration. The non-dimensional parameters are the dimensionless time, the ratio of inertia effect to viscous effect (the Reynolds number), the aspect ratio of the liquid inside the cup and the acceleration ratio (the Froude number). Through this study, the height of the free surface rise in a cup has been predicted and the detailed velocities in the liquid have been examined. Generally, the maximum rise of the free surface is dependent on the Reynolds number and Froude number strongly, but on the aspect ratio weakly. However, the influence of the aspect ratio on the maximum rise of the free surface is not negligible in the range of 10 < Re < 100.

The Tool Coordinate Adjustment Algorithm for Robot Manipulators with Visual Sensor (시각 센서에 의한 로봇 매니퓰레이터의 툴 좌표계 보정에 관한 연구)

  • 이용중;김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1453-1463
    • /
    • 1994
  • Recently many robot manipulators are used for various areas of industriesand factories. It has been frequently observed that the robot manipulator fails to complete the function when the object changes its original position, Due to the unexpected impacts and vibrations the center and direction of the object would be shifted in many real application. In this study, a visual sensing algorithm for the robot manipulator is proposed. The algorithm consists of two parts : Detection of the object migration and adjustments of the orobot manipulators Tool Coordinate System. The image filtering technique with visual sensor is applied for the first part of the algorithm. The change of illumination intensity indicates the object migration. Once the object migration is detected, the second part of the algorithm calculates the current position of the object. Then it adjusts the robot manipulators Tool Coordinate System. The robot manipulator and the Visual sensor communicate each other using interrupt technique via proposed algorithm. It has been observed that the proposed algorithm reduces the malfunction of a robot manipulator significantly. Thus it can provide better line balance-up of the manufacturing processes and prevent industrial accidents efficiently.

  • PDF

Implementation of Real Time Visual Servoing Control for Robot Manipulator

  • Han, Sung-Hyun;Jung, Ding-Yean;Kim, Hong-Rae;Hashmoto, Hideki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1650-1654
    • /
    • 2004
  • This paper presents how it is effective to use many features for improving the speed and the accuracy of the visual servo systems. Some rank conditions which relate the image Jacobian and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. Effectiveness of the redundant features is evaluated by the smallest singular value of the image Jacobian which is closely related to the accuracy with respect to the world coordinate system. Usefulness of the redundant features is verified by the real time experiments on a Dual-Arm Robot manipulator made in Samsung Electronic Co. Ltd.

  • PDF

Real Time Implementation of Visual Servoing Control For Dual-Arm Robot Manipulator

  • Han, Sung-Hyun;Kim, Jung-Soo;Kim, Hong-Rae;Hashmoto, Hideki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.778-782
    • /
    • 2003
  • This paper presents how it is effective to use many features for improving the speed and the accuracy of the visual servo systems. Some rank conditions which relate the image Jacobian and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. Effectiveness of the redundant features is evaluated by the smallest singular value of the image Jacobian which is closely related to the accuracy with respect to the world coordinate system. Usefulness of the redundant features is verified by the real time experiments on a Dual-Arm Robot manipulator made in Samsung Electronic Co. Ltd.

  • PDF

A New Algorithm of Weaving Motion Using Bezier Spline

  • Chung, Won-Jee;Hong, Dae-Sun;Kim, Dae-Young;Seo, Young-Kyo;Hong, Hyung-Pyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2743-2746
    • /
    • 2003
  • In this paper, we propose a new weaving trajectory algorithm for the arc welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms using Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. The algorithm has been implemented on to the industrial manipulator of DR6 so as to show its real possibility. Through simulations and real implementations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning and can reduce the processing time because it needs one-half calculation compared to the conventional algorithm using Catmull-Rom curve.

  • PDF

Design of a Adaptive Controller of Industrial Robot with Eight Joint Based on Digital Signal Processor

  • Han, Sung-Hyun;Jung, Dong-Yean;Kim, Hong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.741-746
    • /
    • 2004
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Development of Synchro-drive Mobile Robot Base with Endless Rotate Type Turret (무한회전 터릿을 갖는 동기식 이동로봇 베이스의 개발)

  • Kwon, Oh-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.123-129
    • /
    • 2005
  • As the robot industry changes from industrial robot into personal robot used in home, the concept also changes from the existing fixed manipulator into Mobile Manipulator of free move in the aspect of appliance. For personal robot with such features, the role of mobile system is very important technology that rules the roost of robot functions. Especially, it is necessary to develop moving mechanism for free move in a narrow environment with obstacles such as home. This study introduces 3-axis structure in order to develop synchronous method that has turret capable of endless revolution for practical use as well as semi-omnidirectional function, and suggests applicable method to solve the problem of mechanical coupling.

Shock Absorbing Safe Mechanism Based on Transmission Angle of a 4-bar Linkage (4절링크의 전달각에 기초한 충격흡수식 안전 메커니즘)

  • 박정준;김병상;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.180-185
    • /
    • 2004
  • Unlike industrial manipulators, the manipulators mounted on the service robots are interacting with humans in various aspects. Therefore, safety has been the important design issue. Many compliant robot arm designs have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safe mechanism based on passive compliance has been proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safe mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of the safe mechanism is verified by simulations and experiments. In this research, it is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms.

  • PDF