• 제목/요약/키워드: Industrial insect

검색결과 272건 처리시간 0.022초

Molecular Cloning of the Sec61p ${\gamma}$ Subunit Homologue Gene from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Lee, Kwang-Sik;Jin, Byung-Rae;Kim, Eun-Sun;Lee, Heui-Sam;Ahn, Mi-Young;Sohn, Hung-Dae;Ryu, Kang-Sun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제5권1호
    • /
    • pp.73-77
    • /
    • 2002
  • The Sec61 trimeric complex ($\alpha$,$\beta$, and ${\gamma}$ subunits) is one of the Sec-complex responsible for post-translational protein translocation across the endoplasmic reticulum membrane in diverse organisms. In this study, a cDNA encoding the Sec61p ${\gamma}$ subunit homologue was isolated from the cDNA library of the mole cricket, Gryllotalpa orientalis. Sequence analysis of a 442-bp cDNA clone showed it to contain an open reading frame of 68 amino acid residues consisted of 204-bp. The homologues of the gene were found in the GenBank database in a diverse organism including insect, mammals, fungi, and plants. The deduced amino acid sequence of Sec61p ${\gamma}$ subunit homologue of the mole cricket showed the highest homology to the gene of the singly known insect, Drosophila melanogester (93% identity), and the least homology to that of the baker's yeast, Saccharomyces cerevisiae (37.2%). Phylogenetic analysis also confirmed a close relationship between the insect Sec61p ${\gamma}$ subunit homologues of G. orientalis and D. melanogester. Hydropathy analysis of the cricket mole and published other data suggested that the hydrophobic segment close to C-terminus is predicted to be the putative membrane anchor, Multiple alignment of the Sec61p ${\gamma}$ subunit homologue among several organisms showed the presence of several conserved domains including the conserved proline at position 28.

Molecular Cloning of a cDNA Encoding Putative Apolipophorin from the Silkworm, Bombyx mori

  • Yun, Eun-Young;Goo, Tae-Won;Kim, Sung-Wan;Hwang, Jae-Sam;Park, Kwang-Ho;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제7권2호
    • /
    • pp.145-149
    • /
    • 2003
  • ApolipophorinIII (apoLp-III) is a protypical exchangeable apolipoprotein that is abundant in hemolymph of many insect species. Its function lies in the stabilization of low-density lipophorin particles (LDLp) crossing the hemocoel in phases of high energy consumption to deliver lipids from the fat body to the flight muscle cells. But, recent studies with naive Galleria mellonella-apoLp-III gave first indication of an unexpected role of that protein in insect immune activation. In this research, we cloned a cDNA encoding putative apoLp-III from the silkworm, Bombyx mori injected with E. coli and characterized its role. We constructed a cDNA library using whole bodies of B. mori larvae injected with E. coli, carried out the differential screening, and selected the up-regulated clones. Among these clones, we focused on a cDNA showing a high sequence similarity to the apolipophorinIII from other insects and analyzed the nucleotide and deduced amino acid sequences. The pupative B. mori Jam123 apoLp-III cDNA contained 1,131 bp encoding 186 amino acid residues. Phylogenetic analysis revealed that the nucleotide and amino acid sequences of the B. mori apoLp-III cDNA formed a highly inclusive subgroup with Bombycidae. But, it was interesting that B. mori Jam123 is closer to B. mandarina than B. mori P50 and B. mori N4. Northern blot analysis showed a signal in the fat body, posterior silkgland and midgut.

Proximate Content Monitoring of Black Soldier Fly Larval (Hermetia illucens) Dry Matter for Feed Material using Short-Wave Infrared Hyperspectral Imaging

  • Juntae Kim;Hary Kurniawan;Mohammad Akbar Faqeerzada;Geonwoo Kim;Hoonsoo Lee;Moon Sung Kim;Insuck Baek;Byoung-Kwan Cho
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1150-1169
    • /
    • 2023
  • Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.

An Integrated Approach in the Pest Management in Sericulture

  • Singh, R.N.;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제5권2호
    • /
    • pp.141-151
    • /
    • 2002
  • The success of sericulture industry in India is mainly attributed to the well-planned annual sericultural activity and the systematic implementation of pest preventive and control measures. The insect spectrum of silkworm and its food plants is complex and plays a major role in limiting the production of silk. Insects cause extensive damage to plant whereas predators and parasites either kill the silkworm larvae or force them to spin flimsy cocoons. Unilateral control measure against this pest is mainly based on the use of synthetic organic insecticides. Though these approaches initially paid rich dividends, the undesirable consequences soon surfaced. Insecticide induced resurgence of gall midges, leafhopper, leaf roller, secondary pest out breaks and development of pest biotypes has led to realization of Integrated Pest Management in sericulture. Various components of IPM, viz. Host plant resistance, cultural practices, biological control, chemical control and integrating them at various technological levels have been studied. Sources of host plant resistance have been identified for some of the major insect pests. High yielding mulberry variety has been propagated and their resistances towards major pests have been recorded. Cultural practices like pruning, pollarding, judicious use of nitrogen, optimum spacing and weed management have preyed to be the powerful tools in containing pests. Natural control over the pest population build- up exerted by the wide range of parasitoids, predators and pathogens has been well documented with identification of natural enemies and studies on their potential. Augmentation, through inoculation or inundative releases of parasitic arthropods, is the most direct way of increasing the numbers of these beneficials in sericulture.

Insecticide Resistance in Increasing Interest

  • Lee, Sung-Eun;Kim, Jang-Eok;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • 제44권3호
    • /
    • pp.105-112
    • /
    • 2001
  • Insect pests can be controlled through direct application of insecticides. Insect control by residual protectants is relatively inexpensive and has an advantage of destroying all stages of infestations. The efficacy of control is largely determined by the concentration of insecticides to which the pest species is exposed. A reduction in the period of control in the field afforded by a specific level of a protectant indicates that resistance has developed. An increase in the level of protectant is required to maintain control, and the efficacy of currently used insecticides has been severely reduced by insecticide resistance in pest species. Development of resistance to particular insecticide varies with species because insecticide resistance is often correlated with increased levels of certain enzymes, which are cytochrome P450-dependent monooxygenases, glutathione S-transferases and esterases. Some sections of insecticide molecules can be modified by one or more of these primary enzymes. A reduction in the sensitivity of the action site of a xenobiotic also constitutes a mechanism of resistance. Acetylcholinesterase is a major target site for insecticide action, as are axonal sodium ion channels and ${\gamma}$-aminobutyric acid receptors. Development of reduced sensitivity of these target sites to insecticides usually occurs. This review not only may contribute to a better understanding of insecticide resistance, but also illustrates the gaps still present for a full biochemical understanding of the resistance.

  • PDF

Molecular Cloning of a Delta-class Glutathione S-transferase Gene from Bombus ignitus

  • Park, Jong-Hwa;Yoon, Hyung-Joo;Gui, Zhong Zheng;Jin, Byung-Rae;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제18권1호
    • /
    • pp.28-32
    • /
    • 2009
  • We describe here the cloning and characterization of a cDNA encoding the glutathione S-transferase (GST) from the bumblebee Bombus ignitus. The Delta-class B. ignitus GST (BiGSTD) gene spans 1668 bp and consists of four introns and five exons that encode 216 amino acid residues with a calculated molecular weight of approximately 24561 Da and a pI of 8.03. The N-terminal domain of BiGSTD has a conserved Ser residue, as well as conserved Lys, Pro, Glu, Ser and Tyr residues that are involved in the GSH-binding site of GST. The BiGSTD showed 60% protein sequence identity to the Bombyx mori GSTT1, 58% to Musca domestica GST, 57% to Drosophila melanogaster GST, and 55% to Anopheles gambiae GST1. BiGSTD was close to the insect-specific Delta class of GSTs in a phylogenetic tree. Northern blot analysis showed that BiGSTD is highly expressed in the fat body and midgut, and less so in the muscles of B. ignitus worker bees.

Degradation of Insect Humoral Immune Proteins by the Proteases Secreted from Enterococcus faecalis

  • Park, Shin-Yong;Kim, Koung-Mi;Kim, Ik-Soo;Lee, Sang-Dae;Lee, In-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제13권1호
    • /
    • pp.37-43
    • /
    • 2006
  • Enterococcus faecalis was isolated from the body fluid of dead Galleria mellonella larvae. Upon injection of E. faecalis into the hemocoel of G. mellonella, the bacteria destroyed parts of humoral defense systems in the hemolymph. In a test for the proteolytic activity of E. faecalis CS, it was confirmed that the enzyme degraded three well-known a-helical antimicrobial peptides, cecropin A, melittin and halocidin, and abolished their activities. We also determined putative cleavage sites on the primary sequences of three peptides through purification and mass analysis of peptide fragments digested by E. faecalis CS. Furthermore it was found that apolipophorin-III, recently known as a critical recognition protein for invading microbes in the hemolymph of G. mellonella, was also degraded by E. faecalis CS. Taken together, the present work shows that the protease in secretions from E. faecalis destroyed two critical humoral immune factors in the hemolymph of G. mellonella larvae. In addition, this paper demonstrates that the relationship between the host insect and the pathogenic bacteria might provide a valuable model system to study the enterococcal virulence mechanism, which may be relevant to mammalian pathogenesis.

Molecular Cloning of a cDNA Encoding Putative Calreticulin from the Silkworm, Bombyx mori

  • Kim, Seong-Ryul;Lee, Kwang-Sik;Kim, Iksoo;Kang, Seok-Woo;Nho, Si-Kab;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제6권1호
    • /
    • pp.93-97
    • /
    • 2003
  • We describe here the cloning of a cDNA encoding putative calreticulin (CRT) from the silkworm, Bombyx mori. The CRT cDNA comprised of 1,194 bp encoding 398 amino acid residues. B. mori. CRT has a HDEL sequence at the end of the C-domain. The B. morl, CRT showed 88% protein sequence identity to the G. mellonella CRT, 71 % to A. aegypti CRT, and 63% to H. sapiens CRT, Phylogenetic analysis revealed that the deduced amino acid sequences of the B. mori CRT formed a highly inclusive subgroup with other insect CRTs. Northern blot analysis exhibited an expression of the B. mori CRT gene in the fat body, evidencing the fat body as a major site for CRT synthesis.

Molecular Cloning of a Profilin cDNA from Bombyx mori

  • Wei, Yadong;Gui, Zhongzheng;Choi, Young Soo;Guo, Xijie;Zhang, Guozheng;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권1호
    • /
    • pp.123-126
    • /
    • 2004
  • The actin-binding protein profilin cDNA was firstly isolated from the lepidopteran insect, silkworm Bombyx mori. The B. mori profilin cDNA contains an open reading frame of 378 bp encoding 126 amino acid residues and possesses three cysteine residues. The deduced amino acid sequence of the B. mori profilin cDNA showed 80% identity to Apis mellifera profilin and 72% to Drosophila melanogaster profilin. Northern blot analysis showed that B. mori profilin is highly expressed in epidermis and less strongly in silk gland. In addition, Northern blot analysis revealed the presence of B. mori profilin transcripts in all tissues examined, suggesting that B. mori profilin gene is expressed in most, if not all, body tissues.

cDNA Cloning and mRNA Expression of A Cuticle Protein Gene Homo­logue from Protaetia brevitarsis

  • Kim Iksoo;Choi Yong Soo;Lee Eun Mee;Kim Mi Ae;Yun Enn Young;Ahn Mi Young;Jin Bynng Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제11권1호
    • /
    • pp.67-70
    • /
    • 2005
  • A cuticle protein gene, PbLCP12.1, from the white­spotted flower chafer, Protaetia brevitarsis, was isolated and characterized. The gene contains an ORF of 336 nucleotides capable of encoding a 113 amino acid polypeptide with a predicted molecular mass of 12,138 Da and pI of 4.15. The PbLCP12.1 protein contained a type-specific consensus sequence identifiable in other insect cuticle proteins. The deduced amino acid sequence of the PbLCP12.1 cDNA is most similar to Bombyx mori cuticle protein BmLCP18 (37$\%$ protein sequence identity). Northern blot analysis revealed that PbLCP12.1 showed the epidermis-specific expression.