• Title/Summary/Keyword: Industrial burner

Search Result 74, Processing Time 0.025 seconds

Stereotype and Effective Cues for Burner-Control Relationship of Four-Stove Range (4구 가스레인지 버너-조종장치 연결에 대한 스테레오타이프 및 효과적 암시 신호)

  • Kee, Do-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • This study aims to investigate stereotype and effective cue presentation methods for burner-control relationship of four-stove range for Korean. A total of 381 subjects(male : 262, female : 119) were surveyed using questionnaire, in which eight gas range models drawn by 3-D Max 2010 were presented. The gas range models were labeled by signs(☆#${\triangle}{\square}$) to eliminate suggestive effect of sequential codes such as alphabets and numbers. The results showed that the stereotype was significantly affected by occupation(p < 0.10), but not by subjects' gender and age(p > 0.39). The stereotype of four-burner gas range for Korean was the same as that of Chinese, while the stereotype was different from that of American. The cues with rectangular-shaped arrangements identical or similar to those of burners were effective to relate burners to corresponding controls. The diamond-shaped cues and burner arrangements were not appropriate for representing burner-control relationship of four-stove gas range. These findings would be used as a basic guideline when designing four-burner gas range or similar equipments.

The Development of Flameless Regenerative Burner for the Industrial Furnaces (공업로용 무화염식 축열버너의 국산화 개발)

  • Kim, Won-Bae;Yang, Je-Bok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.27-33
    • /
    • 2010
  • Recently, much attention has been paid to utilizing highly preheated air up to $1,000^{\circ}C$ through waste gas in industrial furnaces. The regenerative burner technology has shown to provide significant reduction in energy consumption (up to 60%), downsizing of the equipment (about 30%) and lower emissions (about 30%) while maintaining high thermal performance of the system since 2000. The object of this study is to develop the flameless regenerative burner for industrial furnaces based on the FLOX(Flameless Oxidation) principle and it has been designed and manufactured as pilot scale. Performance tests are experimentally done and their results are discussed. They showed 1) a very good uniformity in temperature distribution, 2) about 100 ppm in NOx at the temperature $1,300^{\circ}C$, 3) about 95% in temperature efficiency. Besides, the regenerative burner has advantage in easy maintenance and high usage rate of regenerator due to the separate and portable type of heat exchanger.

Drying Characteristics of 25 kW Class Industrial Dryer Adopting Mat Type Premixed Catalytic Burner (매트 형태의 예혼합 촉매 버너를 활용한 25 kW급 건조기의 성능 특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Song, Kwang-Sup;Choi, Kyu-Sung;Song, Dae-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2856-2861
    • /
    • 2008
  • A catalytic burner has been developed to utilize thermal energy from the fossil fuel without nitrogen oxides (NOx) emission. The burner is shaped into a mat to maximize the heating surface. Premixed combustion has been developed to be used in a closed chamber, such as a radiation type industrial dryer. The burner yields the thermal energy in the form of thermal radiation in the infrared regime, which is proved to be effective to dry organic substances for low moisture condition. Thermal efficiency including the sensible heat is better correlated to the moisture compared to the dry rate.

  • PDF

Characteristic Evaluation of Industrial Radiant Tube Burner System with Oscillating Combustion Technology - NOx Reduction and Performance Improvement - (맥동연소기술을 적용한 산업용 복사관 버너시스템의 특성 평가 - NOx 저감 및 성능 향상 -)

  • Oh, Hyuk-Jin;Cho, Han-Chang;Cho, Kil-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.539-545
    • /
    • 2011
  • Combustion characteristics of industrial radiant tube (RT) burners with forced oscillating combustion technology are investigated using a real-scale (125,000 kcal/h) industrial RT burner facility in both laboratory and field tests. Three different types of industrial RT burners using a by-product gas from the iron-and-steelmaking process are examined in a laboratory facility equipped with a W-type RT. During the field tests, an industrial RT burner is characterized in a large facility equipped with multiple RTs. Their performance and emission controls are investigated under diverse operating conditions. The feasibility of the forced oscillating combustion technology is evaluated by the extent of $NO_x$ reduction and the efficiency improvement. These improvements are able to save energy, extend the RT lifetime, and enhance productivity. The operating conditions that achieve the best performance and emission control for each RT burner are determined.

Analysis on Combustion Characteristics of the Oil Burner using Swirl Flow (스월 유동을 이용한 오일 버너의 연소성능분석)

  • Choi, Chang-Woo;Kim, Young-Hwan;Jeong, Jae-Hyun;Park, Kweon-Ha
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1-8
    • /
    • 2005
  • This paper addresses the analysis of the combustion characteristics in the oil burner using swirl flow. The reduction of exhaust emissions and high efficiency combustion techniques of the industrial burner have been studied to conserve environmental resources. We make swirl burner equal to dimension of wide burner and it is turn round of the combustion gas in construction. For a vigorous inner flow possessde 3m/s velocity in combustion gas of two burners. In calculation, we make use of a densely mesh to detailed analysis. In this study, the effect of swirl flow on the combustion of a commercial burner is analysed by experimental and also simulative manner. The results show the swirl burner has 40% better efficiency and less emissions of CO, HC, NOx and Smoke.

  • PDF

A Study on Low-NOx Combustion in an Oil Burner for an Industrial Boiler (산업 보일러용 오일버너에서의 저 NOx 연소 연구)

  • Shin, Myung-Chul;Kim, Se-Won;Park, Ju-Won;Bang, Byeong-Ryeol;Yang, Won;Go, Young-Gun
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • A novel low NOx oil burner of 0.7 MW (for a 1 ton steam/hr industrial boiler) was designed and tested to investigate the combustion characteristics through in-flame measurement and flue gas analysis. Flame shape was observed by CCD camera and $CH^*/{C_2}^*$ radical distribution in the flame were observed, along with measurement of flue gas composition such as NOx and CO, for various heat inputs, excess airs and pressure of the fuel spary nozzles. The flame showed the two-zone structure: fuel-rich and fuel-lean zone, which was very favorable for the low-NOx combustion, and the NOx emission for haevy oil combustion was significantly reduced to < 150 ppm at 4 % $O_2$, compared with the NOx level of a conventional heavy oil burner.

  • PDF

Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace (산업용 가스화 용융로를 위한 산소 버너의 개발)

  • Bae, Soo-Ho;Lee, Uen-Do;Shin, Hyun-Dong;Kim, Soung-Hyoun;Gu, Jae-Hoi;Yoo, Young-Don
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace (Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.

Drying Characteristics of a Radiative Industrial Dryer Adopting a Mat-Type Premixed Catalytic Burner (매트 형태의 예혼합 촉매 버너에 의한 복사 건조 특성)

  • Kim, Hyouck-Ju;Ahn, Joon;Song, Kwang-Sup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.735-742
    • /
    • 2011
  • A catalytic burner that utilizes the thermal energy from fossil fuels without the emission of nitrogen oxides ($NO_x$) has been developed. For this purpose, the newly developed burner has two features: firstly, it is in the shape of a flat mat so as to maximize its heating surface, and secondly, it adopts premixed combustion so that it can be used in a closed space. In the present study, the burner was used in a radiation-type industrial dryer. This dryer yields thermal energy in the form of thermal radiation in the infrared regime, which has been proved to be effective for drying organic substances under low-moisture conditions. Analysis of the experimental data has proved that the thermal efficiency of the dryer is better correlated to the moisture than to the dry rate