• Title/Summary/Keyword: Industrial Wastewater

Search Result 802, Processing Time 0.026 seconds

Simulation of Compression/Absorption Hybrid Heat Pump System using Industrial Wastewater Heat Source (산업폐수열원 이용 증기압축식/흡수식 하이브리드 히트펌프 시스템의 시뮬레이션)

  • Baik Young-Jin;Park Seong-Ryong;Chang Ki-Chang;Ra Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1117-1125
    • /
    • 2004
  • In this study, in order to utilize the waste heat of industrial wastewater in the range of the relatively low temperature of 40~5$0^{\circ}C$ as a heat source, a hybrid heat pump system was considered by computer simulation method. In the simulation, an absorber, desorber and solution heat exchanger were modelled by UA values while a compressor and pump performance were specified by an isentropic efficiency. Simulation results show that the performance of hybrid heat pump can be up to 80% higher than that of conventional R134a heat pump when it makes a process hot water of 9$0^{\circ}C$ while the wastewater is cooled down to 2$0^{\circ}C$. As the absorber pressure increases, the system performance and deserter pressure increase with a favorable effect of a compressor discharge gas temperature drop.

Study on Electrochemical Characteristics and Fabrication of Catalytic Electrode (복합 촉매 전극의 제조 및 전기화학적 특성에 관한 연구)

  • 민병승;정원섭;김광호;민병철;이미혜
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.401-407
    • /
    • 2002
  • Most of organic compounds discharged from industrial wastewater are treated by chemical oxidation, adsorption and biodegradable process. This process has been demanded a new advanced environmental wastewater treatment process. From this point of view, an electrochemical oxidation process using electrocatalysts has been developed for the destruction of organic compounds. Through this study, a ruthenium oxide/iridium oxide supported on titanium expanded metal was fabricated by thermal decomposition method and its performance was excellent during this experiment.

Thermal Effluent Effects of Domestic Sewage and Industrial Wastewater on the Water Quality of Three Small Streams (Eung, Chiljang and Buso) during the Winter Season, Korea (동계 저온기의 소하천 수질에 미치는 하·폐수의 온배수 영향)

  • Soon-Jin, Hwang;Jeon, Gyeonghye;Eum, Hyun Soo;Kim, Nan-Young;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.238-253
    • /
    • 2017
  • The sewage and wastewater (SAW) are a well-known major source of eutrophication and greentide in freshwaters and also a potential source of thermal pollution; however, there were few approaches to thermal effluent of SAW in Korea. This study was performed to understand the behavioral dynamics of the thermal effluents and their effects on the water quality of the connected streams during winter season, considering domestic sewage, industrial wastewater and hot spring wastewater from December 2015 to February 2016. Sampling stations were selected the upstream, the outlet of SAW, and the downstream in each connected stream, and the water temperature change was monitored toward the downstream from the discharging point of SAW. The temperature effect and its range of SAW on the stream were dependent not only on the effluent temperature and quantity but also on the local air temperature, water temperature and stream discharge. The SAW effects on the stream water temperature were observed with temperature increase by $2.1{\sim}5.8^{\circ}C$ in the range of 1.0 to 5.5 km downstream. Temperature effect was the greatest in the hot spring wastewater despite of small amount of effluent. The SAW was not only related to temperature but also to the increase of organic matter and nutrients in the connected stream. The industrial wastewater effluent was discharged with high concentration of nitrogen, while the hot spring wastewater was high in both phosphorus and nitrogen. The difference between these cases was due to with and without chemical T-P treatment in the industrial and the hot spring wastewater, respectively. The chlorophyll-a content of the attached algae was high at the outlet of SAW and the downstream reach, mostly in eutrophic level. These ecological results were presumably due to the high water temperature and phosphorus concentration in the stream brought by the thermal effluents of SAW. These results suggest that high temperature of the SAW needs to be emphasized when evaluating its effects on the stream water quality (water temperature, fertility) through a systematized spatial and temporal investigation.

Water Quality Characteristics of Nonpoint Pollutants based on the Road Type (도로 유형별 비점오염원의 수질특성)

  • Jang, Dae-Chang;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.631-636
    • /
    • 2009
  • This study has its intention to investigate the water quality of non-point source which is runoff from roads. We have classified and selected twelve sites as city road, industrial road, national road and mountain road by considering their traffic volume and surroundings. Water quality was analyzed based on BOD, COD, SS, T-N and T-P and the concentrations were measured by sampling after rainfall with the interval of 10 minutes, 20 minutes, and 30 minutes. BOD was the highest in city road with 57.6 mg/L and the lowest in mountain road with 45.0 mg/L. For COD, the highest concentration in industrial road was 146.5 mg/L and the lowest was in mountain road with 98.0 mg/L. The run off concentration of SS was up to maximum 630.0 mg/L (average 280.4 mg/L) which was remarkable compared to other types of road. It showed its lowest concentration in national road with 76.0 mg/L. T-N and T-P were the highest in industrial road and the lowest in mountain road. We found out that the runoff concentration was high with large amount of traffic volume and it seemed to be high in city road and industrial road where they were largely affected by their surroundings. Relatively, national road and mountain road seemed to show low concentration as they have less traffic volume and less affected by their surroundings.

Properties of Materials for Treatment of Chromate in Industrial Wastewater (산업폐수중 Chromate이온 처리용 소재특성)

  • 전용진;김영준;홍영호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.103-107
    • /
    • 2004
  • This paper was studied the properties of materials for treatment of anionic chromate$(CrO4^{-2})$ in industrial wastewater. Ion exchange fiber, poly(acryloamidino diethylene diamine) with ion exchange and adsorption was prepared PAN fiber and diethylenetriamine under $AlC1_3$ catalyst at $120^\circ{C}$ and was analyzed $^{{13}/C-NMR$}$ and FT-IR spectroscopy. The maximum adsorption and the coordination of chromate on chelating fiber were analyzed FT-IR spectra. We proposed the coordination structure with inter/intramolecular bond.

  • PDF

A Study on the Electrochemical Treatment of p-methoxyphenol and Hydroquinone Wastewater (파라메톡시페놀 및 히이드로퀴논 폐수(廢水)의 전기(電氣) 화학적(化學的) 처리(處理)에 관한 연구(硏究))

  • Kim, Hong-Soo;Nam, Ki-Dae;Jeong, No-Hee;Ro, Yoon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.153-159
    • /
    • 1991
  • The electrochemical oxidation of p-methoxyphenol and hydroquinone for wastewater treatment application was investigated on platinum anode. At the cyclic voltammetry, it was observed that nagative shift of peak potential of p-methoxyphenol and hydroqinone as the pH of electrolytes increases and the peak current showed higher at strong electrolytes than weak electrolytes. In the case of p-methoxyphenol, the optimum electrode potential of controlled potential electrolysis was observed at the potential region of 0.8-1.0 (V vs. SCE) and hydroquinone was showed at the potential of l.0(V vs. SCE). Specially the oxidation rate of p-methoxyphenol and hydroquinone was showed high value in the acid electrolytes.

Analysis and Distribution of Polycyclic Aromatic Hydrocarbons and Chlorophenols in Sewage and Industrial Wastewater Sludge in Korea (국내 하.폐수슬러지 중 다환방향족탄화수소 및 염화페놀류의 분포 특성)

  • Ju, Joon-Hyung;Kim, Min-Young;Lee, Sung-Hee;Oh, Jeong-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.735-742
    • /
    • 2008
  • In order to evaluate the levels and distribution patterns, the concentrations of PAHs and chlorophenols were investigated in sludge samples discharged from 6 WWTPs located along Nak-dong river and 7 STPs in Busan, Korea. Levels of 16 PAHs and 19 chlorophenols in sludge samples ranged from 1.28 to 44.9 mg/kg dry wt. and from 213 to 3,850 $\mu$g/kg dry wt., respectively. Levels of PAHs in sludge samples except I5 and S4 were detected lower than those of previous studies. The distribution patterns of PAHs and chlorophenols varied with industrial wastewater sludge samples because industrial wastewater sludge had different industrial input sources. However, the distribution patterns of PAHs and chlorophenols in sewage sludge were pretty similar. Phenanthrene, fluoranthene and pyrene were dominant and the fractions of these 3 PAHs relative to 16 PAHs in sewage sludge ranged from 30.8 to 50.7%. 2-chlorophenol is dominated in most sewage sludge samples and the fraction ranged from 36.0 to 66.8%.

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.