• Title/Summary/Keyword: Industrial Robot Manipulator

Search Result 161, Processing Time 0.023 seconds

Contact Force Estimation in 2-link Robot Manipulator Using Extended Kalman Filters (확장된 칼만필터를 이용한 2축 로봇 매니퓰레이터의 접촉힘 추정)

  • 이중욱;허건수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.123-129
    • /
    • 2001
  • Recent requirements for the fast and accurate motion in industrial robot manipulators need more advanced control tech-niques. To satisfy the requirements, importance of force control is being continuously increased and the expensive force sensor is usually installed to obtain the contact force information in practice. This information is indispensable for the force control of maintaining the desired contact force. However, the sensor cost is too high to be used in industrial applications. In this paper, it is proposed to estimated the contact force occurring between the end-effector of 2 DOF robots and environ-ment. The contact force estimation system is developed based on the static and dynamic models of 2 DOF robot manipula-tors. where the contact force is described with respect to the link torque. The Extended Kalman Filter is designed and its performance is verified in simulations.

  • PDF

Discrete-Time Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2011
  • In the real-field of control cases for robot manipulators, there always exists a modeling error, which results the model has the uncertainties in its parameters and/or structure. In many modem applications, digital computers are extensively used to implement control algorithms to control such systems. The discretization of the nonlinear dynamic equations of such systems results in a complicated discrete dynamic equations. Therefore, it will be difficult to design a discrete-time controller to give good tracking performances in the presence of certain uncertainties. In this paper, a discrete-time sliding mode control algorithm for nonlinear and time varying robot manipulators with uncertainties is presented. Sufficient conditions for guaranteeing the convergence of the discrete-time SMC system are derived. As example simulations, the proposed SMC algorithm is applied to a two-link robotic manipulator with unknown dynamics. The results of the simulation indicate that the developed control scheme is effective in manipulators and electro-mechanical system control.

A Study on Intelligent Control of Robot Manipulator Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 로봇 매니퓰레이터의 지능제어에 관한 연구)

  • 김종수;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.193-198
    • /
    • 1999
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

Servo control of a manipulator and trajectory planning (매니퓨레이터 서보제어와 궤도 계획)

  • 최진태;박상덕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.135-139
    • /
    • 1990
  • In general, the control of robot arms falls into two board categories (position control and force control). The joint interpolated trajectory schemes generally interpolate the desired joint path by a class of polynomial functions and generate a sequence of time based control set points for the control of a manipulator from a initial location to its destination. A digital position controller was designed and adapted to the industrial balancing manipulator. And also, the joint interpolated trajectory using 3rd order polynomial was generated in this study. The IBM PC used as the main controller and the trajectory planner had enough run-time capabilities. The 8097BH microcontroller is an integral pan of the joint controller which directly controls an axis of motion. The PI servo control system to treat each joint of the robot arm as a independent joint servo mechanism had satisfying performance, and a sequence of time-based intermediate configurations of the manipulator hand showed good continuity and smoothness on position and velocity of the manipulator's joint coordinates along the trajectory.

  • PDF

Direct Teaching and Playback Algorithm for Peg-in-Hole Task using Impedance Control (펙인홀 작업을 위한 임피던스 제어 기반의 직접교시 및 재현 알고리즘)

  • Kim, Hyun-Joong;Back, Ju-Hoon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.538-542
    • /
    • 2009
  • Industrial manipulators have been mostly used in large companies such as automakers and electronics companies. In recent years, however, demands for industrial manipulators from small and medium-sized enterprises are on the increase because of shortage of manpower and high wages. Since these companies cannot hire robot engineers for operation and programming of a robot, intuitive teaching and playback techniques of a robot manipulator should replace the robot programming which requires substantial knowledge of a robot. This paper proposes an intuitive teaching and playback algorithm used in assembly tasks. An operator can directly teach the robot by grasping the end-effector and moving it to the desired point in the teaching phase. The 6 axis force/torque sensor attached to the manipulator end-effector is used to sense the human intention in teaching the robot. After this teaching phase, a robot can track the target position or trajectory accurately in the playback phase. When the robot contacts the environment during the teaching and playback phases, impedance control is conducted to make the contact task stable. Peg-in-hole experiments are selected to validate the proposed algorithm since this task can describe the important features of various assembly tasks which require both accurate position and force control. It is shown that the proposed teaching and playback algorithm provides high positioning accuracy and stable contact tasks.

Development of Synchro-drive Mobile Robot Base with Endless Rotate Type Turret (무한회전 터릿을 갖는 동기식 이동로봇 베이스의 개발)

  • Kwon, Oh-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.123-129
    • /
    • 2005
  • As the robot industry changes from industrial robot into personal robot used in home, the concept also changes from the existing fixed manipulator into Mobile Manipulator of free move in the aspect of appliance. For personal robot with such features, the role of mobile system is very important technology that rules the roost of robot functions. Especially, it is necessary to develop moving mechanism for free move in a narrow environment with obstacles such as home. This study introduces 3-axis structure in order to develop synchronous method that has turret capable of endless revolution for practical use as well as semi-omnidirectional function, and suggests applicable method to solve the problem of mechanical coupling.

Optimal Trajectory Control for RobortManipulators using Evolution Strategy and Fuzzy Logic

  • Park, Jin-Hyun;Kim, Hyun-Sik;Park, Young-Kiu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 1999
  • Like the usual systems, the industrial robot manipulator has some constraints for motion. Usually we hope that the manipulators move fast to accomplish the given task. The problem can be formulated as the time-optimal control problem under the constraints such as the limits of velocity, acceleration and jerk. But it is very difficult to obtain the exact solution of the time-optimal control problem. This paper solves this problem in two steps. In the first step, we find the minimum time trajectories by optimizing cubic polynomial joint trajectories under the physical constraints using the modified evolution strategy. In the second step, the controller is optimized for robot manipulator to track precisely the optimized trajectory found in the previous step. Experimental results for SCARA type manipulator show that the proposed method is very useful.

  • PDF

Safe Industrial Manipulator Based on a Counterbalancing Mechanism with Adaptation to the Posture Change of a Robot Base Plane (로봇 설치면 자세 변화에 대응 가능한 자중 보상 기반 안전 매니퓰레이터)

  • Do, Hyun Min;Kim, Hwi-Su;Kim, Doo Hyeong;Choi, Tae-Yong;Park, Dong Il;Son, Youngsu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.511-516
    • /
    • 2016
  • Guaranteeing the safety of human workers around robots has become an important issue with the increasing demand for human-robot collaboration in industrial production lines. This study proposes a robot manipulator equipped with a counterbalancing mechanism that reduces the power of actuators required to drive the robot, thus keeping a human worker safer in a human-robot collaborative environment. A counterbalancing torque that exactly cancels out the gravitational torque in the proposed mechanism is generated by restoring the force of a spring in the counterbalancing mechanism. A prototype design and experimental results are presented to verify the effectiveness of the proposed method.

Experimental analysis for dynamic characteristics of 8601 robot (8601 로보트의 동적특성에 대한 실험해석)

  • 은종욱;김도형;배종국;김동해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.528-533
    • /
    • 1988
  • Recently the needs for industrial robot system of high speed continuous path motion such as sealing application have been increasing. To apply to this kinds of work, dynamic analysis for Hyundai 8601 robot has been carried out by experiment. For the good design of high performance robot manipulator, accurate analysis of dynamic characteristics is important especially for current semi-closed loop control type industrial robots.

  • PDF

Implementation of Bilateral Control of fuzzy Robot Hand using Analytic Hierachy Process (계층적 분석방법을 이용한 퍼지 로봇 핸드의 양방향 제어의 구현)

  • 진현수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2827-2830
    • /
    • 2003
  • Tele manipulator is distingushed from industrial robot by iterating same specified work. Manipulator operator is included in control loop for controlling the telemanipulator because he decide directly during the work and order controllabily reducing the modelling error of telemanipulator which depend on the PID controller. But position-force control method of bidirectional control impose unsafety of vibiration and Analytic Hierachy Method can stabilize for reducing nonlinear modelling error by expert operator because of transformation empirical control rule to linear model.

  • PDF