• 제목/요약/키워드: Industrial Robot

검색결과 1,125건 처리시간 0.027초

로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발 (Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control)

  • 구태훈;이종태
    • 대한산업공학회지
    • /
    • 제25권3호
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

사용자 운용 편의성을 위한 수중로봇 MR-1의 수조실험에 관한 연구 (A Basic Study of Water Basin Experiment for Underwater Robot with Improving usability)

  • 남건석;류제두;하경남
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.32-38
    • /
    • 2020
  • This paper describes a method for tracking attitude and position of underwater robots. Underwater work with underwater robots is subject to differences in work efficiency depending on the skill of the operator and the utilization of additional sensors. Therefore, this study developed an underwater robot that can operate autonomously and maintain a certain attitude when working underwater to reduce difference of work efficiency. The developed underwater robot uses 8 thrusters to control 6 degrees of freedom motion, IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and PS (Pressure Sensor) to measure attitude and position. In addition, the thruster allocation algorithm was designed to follow the control desired value using 8 thrusters, and the motion control experiments were performed in the engineering water basin using the thruster allocation method.

로보트 비전을 이용한 대상물체의 위치 결정에 관한 연구 (Determination of Object Position Using Robot Vision)

  • Park, K.T.
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.104-113
    • /
    • 1996
  • In robot system, the robot manipulation needs the information of task and objects to be handled in possessing a variaty of positions and orientations. In the current industrial robot system, determining position and orientation of objects under industrial environments is one of major problems. In order to pick up an object, the roblt needs the information about the position and orientation of object, and between objects and gripper. When sensing is accomplished by pinhole model camera, the mathematical relationship between object points and their images is expressed in terms of perspective, i.e., central projection. In this paper, a new approach to determine the information of the supporting points related to position and orientation of the object using the robot vision system is developed and testified in experimental setup. The result will be useful for the industrial, agricultural, and autonomous robot.

  • PDF

Development of GUI for Industrial Robot Systems

  • Lee, Seong-Ho;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.105-110
    • /
    • 1998
  • This paper proposes a graphical user interface for industrial robot systems. Previous user interfaces for industrial robot systems were based on the text. In order to enable operators to handle robots more efficiently, a set of graphical tools is provided. The graphical tools contain a control panel for operating robots and compiling robot programs, a graphical teaching panel for handling virtual robots and a graphical monitoring panel for checking robot status. Furthermore, the proposed GUI can be used to operate remote robots because it has network utilities. This system consists of the virtual mode and the real mode. The user can handle a 3D virtual solid model of the robot in the virtual mode and an actual robot in the real mode.

  • PDF

Development of a Personal Robot Considering Standardization

  • Choi, Moo-Sung;Yang, Kwang-Woong;Won, Dae-Heui;Park, Joon-Woo;Park, Sang-Duk;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2243-2247
    • /
    • 2005
  • If a personal robot is popularized like a personal computer in the future, many kinds of robots will appear and the number of manufacturers will increase as a matter of course. In such circumstances, it can be inefficient, in case each manufacturer makes a whole platform individually. The solutions for this problem are to modularize a robot component (hardware and software) functionally and to standardize each module. Each module is developed and sold by each special maker and an end-product company purchases desired modules and integrates them. The standardization of a module includes the unification of the electrical, mechanical and software interface. In this paper, a few prototypes developed based on the concept of this study are introduced and possibility which can be standard platform is verified. Each prototype has merits and demerits, and a new structure of the hardware platform considered them is proposed Also the software architecture to develop the standardized and modularized platform is introduced and its detailed structure is described. The name of a method and the way to use that are defined dependently on the standard interfaces in order to use a module in other modules. Each module consists of a distributed object and that can be implemented in the random programming language and platform. It is necessary to study on the standardization of a personal robot after this steadily.

  • PDF

Questionnaire Results of Subjective Evaluation of Seal Robot at the National Museum of Science and Technology in Stockholm, Sweden

  • Shibata, Takanori;Wada, Kazuyoshi;Tanie, Kazuo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.16-19
    • /
    • 2003
  • This paper describes research on mental commit robot that seeks a different direction from industrial robot, and that is not so rigidly dependent on objective measures such as accuracy and speed. The main goal of this research is to explore a new area in robotics, with an emphasis on human-robot interaction. In the previous research, we categories robots into four categories in terms of appearance. Then, we introduced a cat robot and a seal robot, and evaluated them by interviewing many people. The results showed that physical interaction improved subjective evaluation. Moreover, a priori knowledge of a subject has much influence into subjective interpretation and evaluation of mental commit robot. In this paper, 133 subjects evaluated the seal robot, Paro by questionnaires in an exhibition at the National Museum of Science and Technology in Stockholm, Sweden. This paper reports the results of statistical analysis of evaluation data.

  • PDF

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF

로보트 용접 공정 계획을 위한 Graphic Simulation Modeller의 개발 (Development of a Graphic Simulation Modeller for Robot Welding Process Planning)

  • 최병규;정재윤;김동원
    • 대한산업공학회지
    • /
    • 제11권1호
    • /
    • pp.21-32
    • /
    • 1985
  • Presented in this paper is a procedure of developing graphical simulation software for planning robot welding processes. Welding is by far the highest application area for industrial robots, and it has been in great need of such a simulator in designing robot work cells, in justifying the economics of robot welding and in planning robotized welding operations. The model of a robot welding cell consists of four components: They are an welding structure which is a collection of plates to be welded, a positioner to hold the welding structure, a robot with a weld torch, and a set of welding lines (in case of arc welding). Welding structure is modeled by using the reference plane concept and is represented as boundary file which is widely used in solid modeling. Robot itself is modeled as a kinematic linkage system. Also included in the model are such technical constraints as weaving patterns and inclination allowances for each weld joint type. An interactive means is provided to input the welding structure and welding lines on a graphics terminal. Upon completion of input, the program displays the welding structure and welding lines and calculates the center of mass which is used in determining positioner configurations. For a given positioner and robot configuration, the welding line segments that can be covered by the robot are identified, enabling to calculate the robot weld ratio and cycle time. The program is written in FORTRAN for a VAX computer with a Tektronix 4114 graphic terminal.

  • PDF

산업용 양팔로봇 제어 S/W 프레임 개발 (Development of S/W Framework for the Industrial Dual-arm Robot)

  • 최태용;도현민;박동일;박찬훈;김두형;박경택
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.887-891
    • /
    • 2013
  • Human rights at poor working condition is the severe problem in modern manufacturing system. The industrial dual-arm robot is being developed to meet these social issues fundamentally. The dual-arm robot can work instead of human workers. We developed the new dual-arm robot for manufacturing mobile phone and TV. It has advantages such as the solo controller for both arms, the human sized body and arms. The software platform for the industrial dual-arm robot is being developed which has strength in its convenience and intelligence compared to conventional the robot software platforms. Here the development of the dual-arm robot software platform is introduced.