• Title/Summary/Keyword: Industrial Motor

Search Result 1,336, Processing Time 0.037 seconds

Field Demonstration of the Distribution STATCON-Engineering (배전용 STATCON 설치사례-엔지니어링)

  • Han, Y.S.;Yoo, I.D.;Choi, J.Y.;Hong, S.W.;Lee, H.S.;Jeon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2575-2577
    • /
    • 1999
  • This paper describes the engineering process for analyzing the simulation result and deciding the site in which Distribution STATCON operates more effectively. For this purpose the modeling method of industrial loads, equipments and STATCON was represented. Models of motor, furnace and so on are presented for the modeling of industrial loads. The distribution system models include the parameters of the distribution line and transformer. The models of PESS(Power Electronics Subsystem), controllers and maginetics are consist of STATCON model.

  • PDF

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor (고온초전도 동기모터의 계자손실 해석 및 냉각 해석)

  • Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Optimum Shape Design of Magnetizing Yoke of 2 Pole PM Motor for Cogging Torque Reduction

  • Koh Chang-Seop;Ryu Jae-Seop;Hong Sun-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.168-172
    • /
    • 2005
  • A novel cogging torque reduction algorithm is presented for 2-pole permanent magnet DC motor. While the shape of the permanent magnet is changed in the conventional method, the pole shape of the magnetizing yoke is optimized in the presented algorithm. In order to parameterize the shape of the yoke, and the distribution of the residual magnetization of the permanent magnet, the Bezier spline is used. The shape of the magnetizing yoke is optimized using the design sensitivity analysis incorporated with the finite element method and Bezier spline.

Sensorless speed control of DC servo motor (DC 서보모터의 센서리스 속도 제어)

  • 김창세;오정석;하주식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.203-206
    • /
    • 1997
  • DC servo motors are widely used in many industrial fields as actuator of robot and driving power motors of electrical vehicle. Usually in the speed control systems, of motors, speed sensors are required and this fact results in the increased price and operating cost and the limited application of the motors. In this paper, a new speed control method for DC servo motor is proposed. In the scheme, the rotational speed is estimated by the measurement values of the armature voltage and current, instead of measurement by sensor. Optimal control theory is applied to design of the controller in construction of real system. This paper also report on the results of experiments to prove the validity of the proposed method.

  • PDF

Design of a Fuzzy P+ID controller for brushless DC motor speed control

  • Kim, Young-Sik;Kim, Sung-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.627-630
    • /
    • 2004
  • The PID type controller has been widely used in industrial application due to its simply control structure, ease of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

Optimal Design of SR Machine for LSEV using CAD and Genetic Algorithm (GA와 상용설계기법을 이용한 저속전기자동차용 SRM의 최적화 설계)

  • Kim Tae-Hyoung;Ahn Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.317-322
    • /
    • 2005
  • Advantages of switched reluctance motor(SRM) include a simple structure, the ability of operation in hash environments and under partial hardware failures, and a wide speed range. However design of SRM for industrial applications is very difficult because motor's inherent none-linearity and sensitivity of design parameter. In this paper, an optimal method for determining design parameters of a switched reluctance motor is researched. The dominant design parameters are stator and rotor pole arc and switching on and off angle. The parameters affecting performance are examined and selected using evolutionary computations and commercial CAD Program. The proposed design process is very fast. reliable and easy to access. The simulated design method proposed is compared with conventional procedure.

$H_{\infty}$ Control of the Two-Mass Resonant System by LMI (LMI에 의한 2관성 공진계의 $H_{\infty}$제어)

  • Kim, Jin-Soo;Kim, Seoung-Beom;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2196-2199
    • /
    • 1997
  • In the industrial motor drive system, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. In this paper, a control system design method using Linear Matrix Inequality (LMI), which is a tool for control design that replaces or complements Lyapunov-Riccati equations, is provided and a $H_{\infty}$ speed controller for a induction motor by LMI is proposed. In the $H_{\infty}$ speed controller, weights are used to satisfy tracking and disturbance rejection. Experimental results show the validity of the proposed $H_{\infty}$ speed controller by LMI, and this controller is compared with the state feedback controller.

  • PDF

A Study on the Design of Single-Phase Capacitor-Run Induction Motor (콘덴서형 단상 유도전동기의 설계에 관한 연구)

  • Kim, Bok-Ki;Park, Jun-Suk;Chung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.121-123
    • /
    • 1996
  • Capacitor-run motor has a capacitor id series with the auxiliary winding for normal running connections. After the shape of stator and rotor are determined, the motor is designed with variables such as winding distributions or capacitance except punching variables. In this paper, the winding distribution and the turn ratio was taken as design variables because the winding distribution affects the torque and efficiency. And capacitance was selected as an additional variable. Simulation results show the validity of proposed method.

  • PDF

The Improvement of Current Waveforms for a PWM Variable Speed $3{\Phi}$ Induction Motor with the Low Pass LC Filter (저역통과 LC 필터를 이용한 PWM 가변속 3상 유도전동기의 전류파형 개선)

  • Nam, Taek-Kun;Park, Jin-Kil;Kim, Pil-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.588-590
    • /
    • 1996
  • An AC induction motor or constant speed characteristics has been widely used as power source because of simple structure and low maintenance cost in industrial field. The variable frequency AC source with a conventional inverter which is composed or power semi-conductors and drive systems contains much noises in sine wave current due to high speed switching or direct current. In this paper, the low pass LC filter for a variable speed induction motor driven by a full bridge inverter is introduced to solve EMI problem originated by much noise current. The modified LC filter based on the 3rd order Butterworth LC filter is used for the computer simulations and real experiments. The characteristics or proposed LC filter are investigated through FET analysis.

  • PDF