• Title/Summary/Keyword: Industrial Motor

Search Result 1,336, Processing Time 0.032 seconds

Conceptual Design of an HTS Motor for Future Electric Aircraft (차세대 전기 항공기를 위한 HTS 모터의 개념 설계)

  • Le, Dinh-Vuong;Nam, Gi-Dong;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.49-57
    • /
    • 2020
  • Conventional electric motors are not suitable for aircraft because of their large size and weight. High-temperature superconducting (HTS) motors have high current density, high magnetic field density, and low loss, so they can significantly reduce the size and weight compared to general electric motors. This paper presents the conceptual design and analysis results of HTS motors for electric propulsion in future aircraft. A 2.5 MW HTS motor with a rotational speed of 7,200 RPM was designed and the specific power (kW/kg) was analyzed. The operating temperature of the field coil of the HTS motor is 20K in consideration of LH2 cooling. The stator winding were connected in a multi-phase configuration and Litz wires were used to minimize eddy current losses. As a result, it was confirmed that the specific power of the motor is about 18.67 kW/kg, which is much higher than that of the conventional electric motor.

Characteristic of Current and Temperature according to Normal and Abnormal Operations at Induction Motor of 2.2 kW and 3.7 kW (2.2 kW와 3.7 kW 유도전동기의 정상과 구속운전에 따른 전류 및 온도 특성)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2023
  • This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.

A Study on the Introduction and Application of Core Technologies of Smart Motor-Graders for Automated Road Construction (도로 시공 자동화를 위한 스마트 모터 그레이더의 구성 기술 소개 및 적용에 관한 연구)

  • Park, Hyune-Jun;Lee, Sang-Min;Song, Chang-Heon;Cho, Jung-Woo;Oh, Joo-Young
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.298-311
    • /
    • 2022
  • Some problems, such as aging workers, a decreased population due to a low birth rate, and shortage of skilled workers, are rising in construction sites. Therefore research for smart construction technology that can be improved for productivity, safety, and quality has been recently developed with government support by replacing traditional construction technology with advanced digital technology. In particular, the motor grader that mainly performs road surface flattening is a construction machine that requires the application of automation technology for repetitive construction. It is predicted that the construction period will be shortened if the construction automation technology such as trajectory tracking, automation work, and remote control technology is applied. In this study, we introduce the hardware and software architecture of the smart motor grader to apply unmanned and automation technology and then analyze the traditional earthwork method of the motor grader. We suggested the application plans for the path pattern and blade control method of the smart motor grader based on this. In addition, we verified the performance of waypoint-based path-following depending on scenarios and the blade control's performance through tests.

Characteristic Analysis of Line-start Permanent Magnet Synchronous Motor considering PWM Inverter (PWM 인버터 전원을 고려한 유도기동형 영구자석 동기전동기의 특성 해석)

  • Ryu, Dong-Wan;Oh, Young-Jin;Lee, In-Woo;Choi, Tae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.37-39
    • /
    • 2004
  • This study investigates the characteristic analysis of Line-start Permanent Magnet Synchronous Motor considering PWM Inverter. The effects of the PWM inverter on machine characteristic are analyzed by using direct co-simulation of Matlab Simulink and Flux2D. Validity of analysis method is confirmed by the analysis result of Sin-wave power Model.

  • PDF

Effect of Job Rotation on Job Satisfaction, Occupational Safety and Health

  • Jeon, In Sik;Jeong, Byung Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.429-435
    • /
    • 2013
  • Objective: This study aims to analyze job satisfaction and accident prevention according to job rotation system types in a motor company. Background: The study of a motor company's job rotation system has come to attention with enhancing productivity, preventing musculoskeletal disorders, and improving quality. Method: In this study, a survey was conducted to show job satisfaction rates according to job rotation systems. Also an investigation was done regarding industrial accidents and previous workers who are receiving treatment for musculoskeletal disorder over the last five years. Results: The job rotation system in this study has been carried out by voluntary decision of workers. Out of the job rotation types, the medium rotation complexity type had high job satisfaction whereas in a high or low rotation complexity type, which many workers prefer, led to less number of accidents and days of sick leave. Application: The results of this study are expected to be a fundamental data to job design.

Development of a PMSM Drive System for Industrial Sewing Machine (침상침하용 재봉틀을 위한 PMSM 구동시스템 개발)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.129-133
    • /
    • 2011
  • In this paper, a surface mounted permanent magnet synchronous motor(SPMSM) drive system for industrial sewing machine was developed. Even through a lowr-esolution encoder is used for a low cost, using a full order observer enables to estimate accurate speed and position. And it also compensates a disturbance torque caused by the belt between a load and a motor. In order to control precisely stop positions of a needle, a speed trajectory is calculated from the acceleration pattern which is obtained from the position reference. The performance of the developed system is verified by experimental results.

  • PDF

Study on Load Following Characteristics of Generators during Start-up of Induction Motor Load in Isolated System (독립계통에서 유도전동기 부하의 기동시 발전기의 안정적 부하추종에 관한 연구)

  • Shin, Ho-Jeon;Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.80-85
    • /
    • 2015
  • Recently, not only in the Middle East and Southeast Asia but in African area, too, industrial plant construction is being actually done. But unlike in Korea, a lot of them are small-scale isolated industrial plants. And because of the characteristics of industrial plants, induction motors' load forms a large part. The influence of stability resulted from the maneuver and operation of induction motors' load may lead to serious result in the isolated system. This study analyzed it through mathematical modeling on induction motors' maneuver phenomena in the isolated system, realized a case system with the E-TAP program, and simulated load follow performances according to the control variables of a generator inside the isolated system.

Development of Large Propulsion Motor Bearings Considering Slope Conditions (경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구)

  • Oh, Seung Tae;Choi, Jin Woo;Kang, Byeng Hi;Kim, Jin;Choi, Seong Pil;Bin, Jae Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.241-248
    • /
    • 2013
  • In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.

Development of a Master-Slave System for Active Endoscope Using a Multi-DOF Ultrasonic Motor

  • Takemura, Kenjiro;Harada, Dai;Maeno, Takashi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Endoscopes for industrial and medical fields are expected to have multi degree-of-freedom (DOF) motions. A multi-DOF ultrasonic motor we developed consists of a spherical rotor and a bar-shaped stator, and the rotor rotates around three perpendicular axes using three natural vibration modes of the stator. In this study, a multi-DOF unilateral master-slave system for active endoscope using the multi-DOF ultrasonic motor is developed. The configurations of master and slave arms for active endoscope are similar, so that an operator can easily handle the master-slave system. First, driving characteristics of the multi-DOF ultrasonic motor are measured in order to design the slave arm and its controller. Next, the master arm and the slave arm are designed. Then, the unilateral feedback controller for the master-slave system is developed. Finally, the motion control tests of rotor are conducted. As a result, the possibility of the endoscope is confirmed.

Large Thrust Linear Motor for Low-duty-cycle Operation (고추력 저가동률 리니어모터에 관한 연구)

  • Bang, Yeong-Bong;Lee, Gyeong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.161-171
    • /
    • 2002
  • This paper presents a linear motor, which generates large thrust with a low operating rate. In industrial fields there is a need for actuators that work with a low duty cycle but generate large thrusts. An example of such a case is provided by the actuators for ejector mechanisms in electric injection molding machines. The ordinary LSM (linear synchronous motor) is unsuitable for this large-thrust and low-operating-rate usage, because of its large size and high cost. This paper contains experimental results on linear motors that can generate large thrusts for a short time, and which can be cheaply produced. The described linear motor could be contained space of $250mm \times250mm\times 250mm$ and generate a maximum thrust of about 20000 N at a current of 250 A.