• Title/Summary/Keyword: Industrial Motor

Search Result 1,336, Processing Time 0.027 seconds

Effects of Exercise on Endothelial Progenitor Cells in Cardiovascular Disease Patients: A Systematic Review (운동중재가 심혈관질환자의 혈관내피전구세포에 미치는 영향: 체계적 문헌고찰)

  • Kim, Ahrin;Yang, In-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.366-379
    • /
    • 2017
  • In this study, we performed a systematic review and meta-analysis to identify the effects of exercise on endothelial progenitor cells (EPCs) in patients with cardiovascular disease (CVD). We conducted database searches (Cochrane Library, PubMed, EMBASE, ScienceDirect, CINAHL, Scopus, KoreaMed, KISS, RISS, KMBASE) for the effect of exercise on cardiovascular disease, using heart disease, coronary artery disease, heart failure, cardiovascular disease, exercise, motor activity, rehabilitation, and endothelial progenitor cells as the keywords. Of the 539 studies identified, 9 met the inclusion and exclusion criteria. Comprehensive Meta-Analysis version 2.0 was used to analyze the effect size and the publication bias was checked with a funnel plot. Exercise was found to improve the VEGF (vascular endothelial growth factor), CD34+KDR+, and endothelial function, assessed via FMD (flow-mediated dilation), in the exercise vs. control groups, viz. 2.008 (95% CI 0.204-3.812), 1.399 (95% CI 0.310-2.489), and 1.881 (95% CI 0.848-2.914), respectively. Exercise improved the VEGF, number of EPCs, and endothelial function in the CVD patients. Considering the increasing prevalence and mortality rates for cardiovascular disease in Korea, the findings of this study that analyzed the effects of exercise on EPCs might provide guidelines for planning exercise interventions for patients with CVD.

Changes in Activities of Daily Living of Children with Spastic Cerebral Palsy According to Gross Motor Function Classification System After One Year of Physical and Occupational Therapy (물리 및 작업치료 1년 후 대동작 기능분류체계에 따른 경직성 뇌성마비 아동의 일상생활동작 변화)

  • Lee, Kwon-Woo;Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.431-440
    • /
    • 2019
  • This study was conducted to investigate changes in activities of daily living (ADLs) according to the Gross Motor Function Classification System (GMFCS) after one year of physical and occupational therapy and to compare the responsiveness of ADL tools. A total of 48 children with spastic cerebral palsy participated in the study. The GMFCS, Functional Independence Measure for Children (WeeFIM), and Pediatric Evaluation of Disability Inventory (PEDI) were measured. The results showed that the GMFCS was significantly correlated with the PEDI (p<0.05), while there was a significant difference in the change of ADLs measured by the PEDI, but not the WeeFIM. There was a significant difference in the changes in ADLs according to the GMFCS, and the change in ADLs in the high functional level group was significantly higher than in the low functional level group (p<0.05). After physical and occupational therapy, the degree of improvement of ADLs varied according to the GMFCS, but seemed to be improved in a clinically meaningfully way. The PEDI is sensitive to changes in ADLs, so it may be used widely in clinical practice.

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.

Effect of Transcranial Direct Current Stimulation on University Student's Attention (경두개직류전류자극이 대학생의 집중력에 미치는 영향)

  • Oh, Myung Hwa;Lee, Eun Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.127-132
    • /
    • 2019
  • This study examined the change in the attention of University students after being given Transcranial Direct Current Stimulation (tDCS). The participants were divided randomly into two group (tDCS vs. Control). tDCS was applied to 37 university students ($23.08{\pm}3.33years$). The tDCS group was applied 2 mA, for 13 minutes twice over a 26 minute period ($n_1=19$). The control ($n_2=18$) was not applied after padding and was applied twice for 13 minutes over a 26 minute period. This study was conducted from September 3 to 28, 2018 and three times a week for a total of four weeks. The electroencephalogram was confirmed to affect attention. tDCS showed significant improvement in the results in the sensory motor rhythm wave (p<0.01, 95% CI: -1.955, -0.459), middle beta wave (p<0.05; 95% CI: 0.027, 0.943), and power ratio (p<0.01, 95% CI: -1.764, -0.315). The results showed that tDCS application increased the attention ability significantly. These results can be applied to attention deficit disorder (ADHD) patients and college students.

The Development of IMG Integral Foaming Crashpad (IMG 발포일체성형 크래시패드 개발)

  • Choi, Sung-Sik;Kong, Byung-Seok;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.607-612
    • /
    • 2019
  • The softness of the crashpad part is one of the important factors which affect the interior perceived quality of the vehicle interior. And while improving the softness of the crashpad part, every effort to lower the production cost has been going on. The PU foaming process for the crashpad part depends on the understanding of a lot of processes, tools and material properties. Therefore, to achieve the requirement of the customer for the interior part's visual quality, the integrated design techniques are investigated to correlate the processes, tool design, material design and the computer aided analysis. In this paper, IMG (In Mold Grain) designed concept is firstly developed to integrate the skin preforming, plastic injection molding of the substrate and the foaming process in a tool within reduced processes. Through the application of this technology, softness of crashpad is improved by 40% compared to the conventional vacuum molding method, and the existing process is reduced by 50% by integrating the injection process and the manufacturing process. And by integrating the injection mold and the skin mold and removing the foaming mold, the number of molds are reduced from 3 to 1, resulting in 20% reduction in the cost of applying a medium-sized passenger car.

Development of a Self Balancing Electric Wheelbarrow (자기 균형 기능이 있는 외발 전동 손수레 개발)

  • Lee, Myung-Sub;Sung, Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • In this paper, a new type of electric wheelbarrow is proposed and developed. The developed electric wheelbarrow is equipped with an attitude reference system(ARS) sensor, which consists of 3-axis acceleration sensor and 2-axis Gyro sensor so that it can estimate pitch angle and roll angle. When an operator tilts the wheelbarrow up and down, the pitch angle is detected. The sign of the pitch angle is interpreted as the operator's intention for moving the wheelbarrow forward or backward and the controller drives the wheel of the wheelbarrow with the velocity according to the magnitude of the detected pitch angle. A cargo box of the wheelbarrow is designed to rotate and is controlled to maintain level always, so an operator can handle the electric wheelbarrow easily and safely. The wheelbarrow consists of an in-wheel motor, a DC motor, motor drives, an ARS sensor considering economical use in industrial field. Three experiments are performed to verify the feasibility and stability of the electric wheelbarrow.

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.

Effects of Polychlorinated Biphenyls on the Expression of KAP3 Gene Involved in the 'Critical Period' of Rat Brain Sexual Differentiation

  • Lee, Chae-Kwan;Kang, Han-Seung;June, Bu-ll;Lee, Byung-Ju;Moon, Deog-Hwan;Kang, Sung-Goo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.327-331
    • /
    • 2001
  • There is a critical developmental period during which brain sexual differentiation proceeds irreversibly under the influence of gonadal hormone. Recently, kinesin superfamily-associated protein 3 (KAP3) gene expressed during the 'critical period' of rat brain differentiation was identified by us (Choi and Lee, 1999). KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons (Yamazaki et al., 1996). mRNA level of KAP3 gene markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited the prepubertal increase in KAP3 mRNA level (Choi and Lee, 1999). In the present study, we aimed to investigate the effects of polychlorinated biphenyls (PCBs), as endocrine disruptors (EDs) on the expression of KAP3 gene during the 'critical period' of rat brain development. In our data, PCBs significantly decreased the expression of KAP3 gene in the fetal (day 17) and the neonatal (day 6 after birth in) male and female rat brains. The body weight and the breeding ability were significantly decreased in the PCBs-exposed rats compared with the control. These results showed that PCBs affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the fetal and the neonatal rat brains. The maternal exposure to the PCBs may lead to toxic response in embryonic brain sexual differentiation and breeding ability after sexual maturation. This study indicates that KAP3 gene may be useful as a gene marker to analyze the molecular mechanism of toxic response in the animal brain development and sexual maturation exposed to PCBs.

  • PDF

Safe landing control of unmanned Quad-rotor Emergency Procedures (긴급 상황에 대비한 무인 쿼드로터의 안전 착륙 제어)

  • Baek, Seung-Jun;Park, Jong-Ho;Ryu, Ji-Hyoung;Lim, Shin-Teak;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2335-2342
    • /
    • 2014
  • If you want to use the unmanned quad rotor for emergency information provision and information about the traffic situation of real-time and moving information is included in the car to help in emergency vehicle operation of the city and in the distribution future innovation the need to consider to have enough safety of the use of silent quad rotor. Therefore, in this study, the unmanned quad rotor system research of safe landing control from the center for the improvement of safety of unmanned quad rotor system you have a motor of four, has taken a good structural balance system based on the dynamic model and motion considering the nonlinear characteristics, and attempts to proceed via non-linearity and system disturbances, tough Fuzzy controller, and analyzed through a computer simulation result.

The Effect of Proprioceptive Neuromuscular Facilitation(PNF) on Swallowing Function of the Stroke Patients (고유수용성신경근촉진법이 뇌졸중 환자의 연하기능에 미치는 효과)

  • Park, Yoo Rin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4582-4587
    • /
    • 2012
  • The purpose of this study was to identify an effects of Proprioceptive Neuromuscular Facilitation(PNF) on swallowing function of the stroke patients. For this purpose, subjects were 9 experimental group and 9 control group of the stoke patients. The experimental group has been proceeded total 12 times based on 3 times per 30~50 minutes at a supplied place in the PNF program. The results of this study were as follows. First, the dysphagia scale of the experimental group that was provided with PNF, had a considerable statistic difference. Secondly, the oral pharyngeal functions of the experimental group that was provided with PNF, had a considerable statistic difference. Thirdly, the swallowing speed of the experimental group that was provided with PNF, had a statistic difference in the swallowing speed reduced of the first set, in total. Therefore, PNF is informed to have a effect in advancing the swallowing function of the stroke patients. And in the future, it is considered that researches that it develops the motor program in which the various techniques are combined and it can contribute to the swallowing functions for patients of stroke.