• Title/Summary/Keyword: Industrial Laser

Search Result 686, Processing Time 0.028 seconds

Study on the Modal Test for a Turbocharger Wheel Using Vibro-acoustic Responses (진동 방사음을 이용한 터보차져 휠 동특성 시험에 대한 고찰)

  • Lee, Hyeong-Ill;Lee, Dug-Young;Park, Ho-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-37
    • /
    • 2011
  • The modal characteristics of a compressor wheel of an automotive turbocharger have been investigated using an experimental method based on an acoustic frequency response function, p/f(${\omega}$), where p is sound pressure radiated from a structure, and f is impact force. First, a well-defined annular disc with narrow radial slots was examined to check whether the vibro-acoustic test could precisely determine natural quencies and vibration modes of structures showing that the vibro-acoustic test proposed in this paper was comparable to the conventional modal test with an accelerometer and the numerical analysis. The conventional method has been found to be inappropriate for compressor wheel because of additional mass due to the accelerometer and additional damping from the accelerometer cable alter the dynamic responses of the wheel blades. odal characteristics of the wheel have been defined using vibro-acoustic test and verified with the results from another conventional method using a laser vibrometer. Natural quencies and mode shapes of a turbocharger wheel, which can't be precisely obtained with onventional method, could be defined accurately without the additional effects from sensor and cable. Proposed method can be applied to small structures where conventional sensors and cables could generate troubles.

Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

  • Ochsner, A.;Gegner, J.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2004
  • For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

  • PDF

A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP (RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구)

  • Kim, Tae-Hwa;Moon, Sung-Ho;Kang, Seong-Ho;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

The Effects of Driving Waveform of Piezoelectric Industrial Inkjet Head for Fime Patterns (산업용 압전 잉크젯 헤드의 구동신호에 따른 특성)

  • Kim, Young-Jae;Yoo, Young-Seuck;Sim, Won-Chul;Park, Chang-Sung;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1621-1622
    • /
    • 2006
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristic s were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Also we observed the movement characteristics of PZT actuator with LDV(Laser Doppler Vibrometer) system, oscilloscope and dynamic signal analyzer. Missing nozzles caused by bubbles in chamber were monitored by their resonance frequency. Using the water based ink of viscosity of 4.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets up to 20kHz, 4.4m/s and above 8pL at the different applied driving waveforms.

  • PDF

A study on characteristic of the smoke removal of an air cleaner by monitoring of turbidity with laser (레이저 혼탁도 모니터링을 통한 공기청정 특성에 관한 연구)

  • Kim, Su-Weon;Park, Jong-Woong;Joung, Jong-Han;Chung, Hyun-Ju;Lee, Yu-Soo;Jeon, Jin-An;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1698-1700
    • /
    • 2003
  • The electrostatic precipitator(ESP) is a device for removing particulate pollutants in the form of either a solid (dust or fumes) or a liquid (mist) from a gas using an electrostatic force, Electrostatic precipitation has been widely used for cleaning gas from almost all industrial processes with a medium to large gas volume(>2,000 $m^3/min$), including utility boilers, blast furnaces, and cement kilns. ESP is also in wide use for air cleaning in living environments (home, offices, hospitals, etc.) ESP has large advantages over other particulate control device : a low operating cost, a high collection performance, and ease of maintenance. The purpose of this study is to investigate the characteristics of the smoke removal of an air cleaner by adjusting variable frequency and monitoring of turbidity three results of this research are as follows ;the first is the best efficient switching frequency which is 60Hz, the second is the smoke removal time which is obtained to 9 seconds, third is that the best efficient firing angle is $90^{\circ}$ As a result, the switching trigger frequency and SCR gate firing angle is very important factor to predict the best collection efficiency.

  • PDF

Analysis of Leakage Current of a Laser Diode by Equivalent Circuit Model (등가회로 모델에 의한 레이저다이오드의 누설전류 해석)

  • Choi, Young-Kyu;Kim, Ki-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.330-336
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has tern designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Study on Shingled String Interconnection for High Power Solar Module (고출력 슁글드 태양광 모듈 제작을 위한 스트링 연결에 관한 연구)

  • Kim, Juhwi;Kim, Junghoon;Jeong, Chaehwan;Choi, Wonyoung;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.449-453
    • /
    • 2021
  • Interest and investment in renewable energy have increased worldwide, highlighting the need for renewable energy. Solar energy was the most promising energy of all renewable energy sources, and it has the highest investment value. Because photovoltaics require a certain amount of area for installation, high density and high output performance are required. Shingled module is a promising technology in that they are featured by higher density and higher output compared to the conventional modules. Shingled technology uses a laser scribing to divide solar cells that are to be bonded with electrically conductive adhesive (ECA) to produce and connect strings, which has a higher output in the same area than the conventional modules. In the process of producing solar modules, metal ribbons are used to interconnect cells, but they are also needed for string connections in shingled solar cells. Accordingly, in this study, we researched the interconnection that best suits the connector that joins the string to the string. The module outputs produced under the conditions of the string interconnection were compared and analyzed.

A study on the actual precision shooting training based on virtual reality (가상현실 기반 실전적 정밀사격훈련 구현 연구)

  • Lee, Byounghwak;Kim, Jonghwan;Shin, Kyuyoung;Kim, Dongwook;Lee, Wonwoo;Kim, Namhyuk
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.62-71
    • /
    • 2018
  • The rapid growth of virtual reality technology in the era of the 4th Industrial Revolution has accelerated scientification of combat training systems in addition to ICT(information and communications technology) in military field. Recently, research and development of simulators based on virtual reality have been actively conducted in order to solve sensitive issues such as increase of civil complaints due to the noise of a shooting range, prevention of shooting accident, and reduction of training cost. In this paper, we propose two key solutions: spatial synchronization method and modified point mass trajectory model with small angle approximation to overcome technical limitations of a current training simulator. A trainee who wears a haptic vest in a mixed reality environment built in MARS(medium-range assault rifle shooting simulator) is able to conduct not only precision shooting but also two-way engagement with virtual opponents. It is possible for trainee to receive more reliable evaluations in the MARS than an existing rifle simulator based on laser.

  • PDF

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

A Study on the Reverse Engineering and Wear Analysis for Remanufacturing Planner Miller (플래너 밀러 재제조를 위한 역설계 및 마모 분석에 관한 연구)

  • Choi, Doo-Han;Kong, Seok-Hwan;Byeon, Jeong-Won;Kim, Tae-Woo;Hong, Dae-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1103-1110
    • /
    • 2022
  • The old machine tools that have been used for a long time cause both increase in defective rate and decrease in productivity compared to new machines due to wear and failure of their components. In order to improve productivity and quality of machined components through remanufacturing, it is necessary to analyze the wear and failure of major components of old machine tools. In this study, the process for reverse engineering is designed for the remanufacture of planner millers, which belong to a very large machine tool. Also, the suitability of the designed process is verified through the analysis of the selected remanufactured components. In the first step of the process, some major components of the aging planner miller are scanned using a 3D laser scanner. In the next step, reverse engineering is performed using the data obtained through 3D scanning. Finally, wear and failure analysis is performed by comparing the reverse engineering data with the scan data. As a result, this reverse design and wear analysis can complement the insufficient design database and reduce costs in the maintenance of remanufactured products.