• Title/Summary/Keyword: Inductive power transmission

Search Result 91, Processing Time 0.021 seconds

Magneto-inductive Wave in Periodic Chain of Ferrite Cores and Chip Capacitors (페라이트 코어와 칩캐패시터의 주기적 연결구조에서 발생하는 자기유도파)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2015
  • In this paper, a magneto-inductive wave generated in a chain of LC resonators fabricated with Ni-Zn ferrite cores and chip capacitors is presented. RF signal propagates to neighbor resonator one by one as a consequence of the magnetical coupling between two resonators in the device. The magnetical coupling is due to the mutual inductances along the chain of resonators. So, the signal amplitude (${\approx}$ coupling intensity) is dependent of the mutual inductance which can be adjusted by applied magnetic field. In order to demonstrate the device, some experiments have been carried out systemically. The transmission characteristics of a magneto-inductive wave could be controlled by applied external magnetic field. The device composed of 5 resonators; the center frequencies were estimated to be 32 MHz and 38 MHz with the external magnetic flux density of 75 Oe and 222 Oe, respectively. We expect that the reported results could open a promising way to a high variety of applications in one- and two-dimensional functional devices, such as transducers, delay lines, power dividers and couplers.

Design of Signal Processing Circuit for Semi-implantable Middle Ear Hearing Device with Bellows Transducer (벨로즈형 진동체를 갖는 반이식형 인공중이용 신호처리회로 설계)

  • Kim, Jong Hoon;Shin, Dong Ho;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • In this paper, a signal processing circuit for semi-implantable middle ear hearing device is designed using the TCBT which is recently proposed for a new middle ear transducer that can be implanted at round window of cochlea. The designed semi-implantable hearing device transmits digital sound signal from external device located at behind the ear to the internal device implanted under the skin using inductive coupling link methods with high efficiency. The coils and signal processing circuits are designed and implemented considering the total transmission and reception distance including skin thickness of temporal bone for the semi-implantable hearing device. And also, to improve the data transmission efficiency, the output circuits which can supply sufficient signal power is designed. In order to confirm operation of semi-implantable hearing device using inductive coupling link, the circuit analysis was performed using PSpice, and the performance was verified by implementing a signal processing board of an available size.

ICT based Wireless Power Transmission System Development (ICT 기반의 무선전력전송 시스템 개발)

  • Lee, Jong-Hee;Bang, Junho;Chun, Hyun-Jun;Seo, Beom-Geun;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • Recently, wireless power transmission has attracted much interest and is the subject of much research in industry and academia. As its name implies, it is a technology which involves transferring power without wires. This paper presents the design of an ICT-based wireless power transmission system. The proposed system consists of a wireless transceiver unit and high-efficiency coil unit, which can increase both the transmission efficiency and the effective power distance. In particular, the wireless transceiver unit was designed to work with the ICT technique to enable real-time remote monitoring. Also, studies were done relating to the effect of reducing the standby power. The optimal frequency of IGBT devices used in industrial wireless power systems of 20[KHz] was utilized. The values of $23.9[{\mu}H]$ and $2.64[{\mu}F]$ were selected for L and C, respectively, through many field experiments designed to optimize the system design. In addition, an output current controlling algorithm was developed for the purpose of reducing the standby power. The results presented in this paper represent a 75[%] to 85[%] higher power transmission efficiency with a 10[%] increase in the effective power transmission distance compared with the existing systems. As a result, the proposed system exhibits a lower standby power and maintenance costs. Also, the designed wireless transceiver unit facilitates fault detection by means of user acquired data with the development of the ICT applied program.

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.

A Study of the Power Flow Control Using SSSC (SSSC를 이용한 전력조류제어에 관한 연구)

  • Na, Wan-Ki;Chung, Jai-Kil;Lee, In-Yong;Chung, In-Hark;Lee, Hong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.239-241
    • /
    • 2000
  • This paper describes a modeling of a FACTS(Flexible AC Transmission System) device, namely, SSSC(Static Synchronous Series Compensator) model. The SSSC, a solid-state voltage source inverter coupled with a transformer, is connected in series with a transmission line. SSSC provides controllable compensating voltage, which is in quadrature with the line current, over an capacitive and an inductive range, independently of the magnitude of the line current. This SSSC model is obtained from the injection model for series connected VSC(Voltage Source Converter) by adding a constraint that the injected voltage should be in quadrature with the line current. The paper discusses the basic operating and performance characteristics of the SSSC, and power flow control in power system.

  • PDF

The Performance of ZnO Varistors and Surge Protector for 154kV Underground Cable (154kV 지중 방식층용 ZnO소자 및 서지 보호장치 성능)

  • Cho, H.G.;Man, D.H.;Yoon, H.S.;Lee, J.H.;Jang, T.B.;Lee, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.248-250
    • /
    • 2001
  • The surge protector is crucial power apparatus to guarantee the safe operation of power transmission of underground cable which can effectively restrain the overvoltage and inductive lightning stroke in power system. This paper describes the results of a study on the performance of ZnO varistors and surge protector for 154 kV underground cable. And, the influence of water tight and insulating performance was evaluated through such as surge protector of the armored design.

  • PDF

A Codeword Generation Technique to Reduce Dynamic Power Consumption in Tightly Coupled Transmission Lines (밀결합 전송선 상에서 전력 저감을 위한 코드워드 생성 기법)

  • Lim, Jae-Ho;Kim, Deok-Min;Kim, Seok-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.9-17
    • /
    • 2011
  • As semiconductor process rapidly developed, the density of chips becomes higher and the space between adjacent lines narrows smaller. This trend increases the capacitance and inductance in interconnects and the coupling-capacitance of adjacent lines grows even bigger than the self-capacitance of themselves, especially in global interconnects. Inductive and capacitive coupling observed in these phenomena may cause serious problems in signal integrity. This paper proposes a codeword generation technique using extra interconnect lines to reduce the crosstalk caused by inductive and capacitive coupling and to reduce dynamic power consumption considering probability of input data. To estimate the performance of the proposed technique, the experimental results have been obtained using FastCap, FastHenry and HSPICE, and it has been shown that the power consumption using the proposed technique has yielded approximately 15% less than the results of the previous technique.

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type and Their Performance Comparison (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 성능평가에 관한 연구)

  • 홍원표;김용학
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.74-83
    • /
    • 2002
  • The maximun short circuit current of modern power system is becoming so large that circuit breaker is not expected to be able to shut down the current in the future In order cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for furture power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system. The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element (resistor or reactor). from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparision characteristics for two type SFCL. Desired design specification and operation parameters of SECL were also given qualitatively by the performance.

2MHz, 2kW RF Generator (2MHz, 2kW RF 전원장치)

  • Lee J.H.;Choi D.K.;Choi S.D.;Choi H.Y.;Won C,Y.;Kim S.S
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.260-263
    • /
    • 2003
  • When ICP(Inductive Coupled Plasma type etching and wafer manufacturing is being processed in semiconductor process, a noxious gas in PFC and CFC system is generated. Gas cleaning dry scrubber is to remove this noxious gas. This paper describes a power source device, 2MHz switching frequency class 2kW RF Generator, used as a main power source of the gas cleaning dry scrubber. The power stage of DC/DC converter is consist of full bridge type converter with 100kHz switching frequency Power amplifier is push pull type inverter with 2MHz switching frequency, and transmission line transformer. The adequacy of the circuit type and the reliability of generating plasma in various load conditions are verified through 50$\Omega$ dummy load and chamber experiments result.

  • PDF

A Study on the Application Impacts on Korean Power System by Introducing SFCL

  • Kim, Jong-Yul;Park, Heung-Kwan;Yoon, Jae-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.1-6
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154 ㎸ system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154 ㎸ Superconducting Fault Current Limiter(SFCL) to 154 ㎸ transmission systems is proceeding with implementation slated for after 2010. In this paper, the resistive and inductive SFCLs are applied to re-duce the fault current in Korean power system and their technical and economic impacts are evaluated. The results show that the application of SFCL can eliminate the need to upgrade the circuit breaker rat-ing and the economic potential of SFCL is evaluated positively.